Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-15T12:24:32.552Z Has data issue: false hasContentIssue false

31 - Monitoring pharmaceutical interventions with conventional ultrasound (IMT)

from Monitoring pharmaceutical interventions

Published online by Cambridge University Press:  03 December 2009

John R. Crouse
Affiliation:
Wake Forest University School of Medicine, Winston-Salem NC, USA
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

Background

Doppler ultrasound was validated in the mid 1970s as a means of quantifying tight stenosis of the extracranial carotid arteries (Barnes et al., 1976) and thus of identifying individuals at risk for cerebrovascular events. In the early 1980s, as reviewed previously (Crouse and Thompson, 1993), several investigators demonstrated associations of cardiovascular risk factors with Doppler-quantified extracranial carotid stenosis (e.g. Hennerici et al., 1981; Postiglione et al., 1985; Lo et al., 1986; Josse et al., 1987) and of stenosis with a 5.5-fold increased risk of incident stroke and a 3-fold increased risk of coronary disease compared to individuals without stenosis (Chambers and Norris, 1986). However, although Doppler ultrasound accurately identifies stenosis of the extracranial carotid arteries, in 1982 Blankenhorn and Curry reviewed the evidence that imaging lumens of arteries and stenosis (angiography, Doppler) underestimated the underlying pathology and that therefore only autopsy provided an accurate evaluation of the pathogenesis, prevalence, and prognosis of atherosclerosis (Blankenhorn and Curry, 1982). This observation provided rationale for early studies that used B-mode ultrasound to quantify wall thickness of the extracranial carotid arteries, and investigation utilizing noninvasive imaging of walls of arteries led to a paradigm shift in the population-based investigation of arterial disease. Development of methods that were not invasive and provided information on arterial walls rather than lumens enabled quantification of the impact of risk factors on subclinical disease (before the occurrence of clinical events), and of subclinical disease on clinical outcome for the first time.

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 430 - 450
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, C. D., Blake, C. C., Tamayo, A., et al. (2005). 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke, 36, 1904–9.CrossRefGoogle ScholarPubMed
Anand, S. S., Yusuf, S., Vuksan, V., et al. (2000). Differences in risk factors, atherosclerosis, and cardiovascular disease between ethnic groups in Canada: the Study of Health Assessment and Risk in Ethnic groups (SHARE). Lancet, 356, 279–84.CrossRefGoogle Scholar
Anand, S. S., Yi, Q., Gerstein, H., et al. (2003). Study of Health Assessment and Risk in Ethnic Groups; Study of Health Assessment and Risk Evaluation in Aboriginal Peoples Investigators. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation, 108, 420–5.CrossRefGoogle ScholarPubMed
Angerer, P., Kothny, W., Stork, S. and Schacky, C. (2002a). Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries. Cardiovascular Research, 54, 183–90.CrossRefGoogle Scholar
Angerer, P., Stork, S., Kothny, W. and Schacky, C. (2002b). Effect of postmenopausal hormone replacement on atherosclerosis in femoral arteries. Maturitas, 41, 51–60.CrossRefGoogle Scholar
Barnes, R. W., Bone, G. E., Reinertson, J., et al. (1976). Noninvasive ultrasonic carotid angiography: prospective validation by contrast arteriography. Surgery, 80, 328–35.Google ScholarPubMed
Black, D. M. (2002). Introduction to conference on vascular imaging. American Journal of Cardiology, 89 (Suppl. B), 1B–3B.CrossRefGoogle Scholar
Blankenhorn, D. H. and Curry, P. J. (1982). The accuracy of arteriography and ultrasound imaging for atherosclerosis measurement. Archives of Pathology and Laboratory Medicine, 106, 483–9.Google ScholarPubMed
Blankenhorn, D. H., Selzer, R. H., Crawford, D. W., et al. (1993). Beneficial effects of colestipol-niacin therapy on the common carotid artery. Circulation, 88, 20–8.CrossRefGoogle ScholarPubMed
Bonithon-Kopp, C., Touboul, P. J., Berr, C., Magne, C. and Ducimetiere, P. (1996). Factors of carotid arterial enlargement in a population aged 59 to 71 years. The EVA Study. Stroke, 27, 654–60.CrossRefGoogle Scholar
Bonithon-Kopp, C., Scarabin, P. Y. and Taquet, A. (1991). Risk factors for early carotid atherosclerosis in middle-aged French women. Arteriosclerosis and Thrombosis, 11, 966–72.CrossRefGoogle ScholarPubMed
Boquist, S., Ruotolo, G., Tang, R., et al. (1999). Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation, 100, 723–8.CrossRefGoogle ScholarPubMed
Borhani, N. O., Mercuri, M., Borhani, P. A., et al. (1996). Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS). A randomized controlled trial. Journal of the American Medical Association, 276, 785–91.CrossRefGoogle ScholarPubMed
Bots, M. L., Swieten, J. C., Breteler, M. M. B., et al. (1993). Cerebral white matter lesions and atherosclerosis in the Rotterdam Study. Lancet, 341, 1232–7.CrossRefGoogle ScholarPubMed
Bots, M. L., Jong, P. T. V. M., Hofman, A. and Grobbee, D. E. (1997). Left, right, near or far wall common carotid intima-media thickness measurements: associations with cardiovascular disease and lower extremity arterial atherosclerosis. Journal of Clinical Epidemiology, 50, 801–7.CrossRefGoogle ScholarPubMed
Bots, M. L., Hoes, A. W., Koudstaal, P. J., Hofman, A. and Grobbee, D. E. (1997). Common carotid intima-medial thickness and risk of stroke and myocardial infarction. The Rotterdam Study. Circulation, 96, 1432–7.CrossRefGoogle Scholar
Bots, M. L., Evans, G. W., Riley, W., et al. (2003a). The Osteoporosis Prevention and Arterial effects of Tibolone (OPAL) study: design and baseline characteristics. Controlled Clinical Trials, 24, 752–75.CrossRefGoogle Scholar
Bots, M. L., Evans, G. W., Riley, W. A. and Grobbee, D. E. (2003b). Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke, 34, 2985–94.CrossRefGoogle Scholar
Burke, G. L., Evans, G. W., Riley, W. A., et al. (1995). Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) study. Stroke, 26, 386–91.CrossRefGoogle ScholarPubMed
Byington, R. P., Furberg, C. D., Herrington, D. M., et al. (2002). Heart and Estrogen/Progestin Replacement Study Research Group. Effect of estrogen plus progestin on progression of carotid atherosclerosis in postmenopausal women with heart disease: HERS B-mode substudy. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 1692–7.CrossRefGoogle ScholarPubMed
Cao, J. J., Thach, C., Manolio, T. A., et al. (2003). C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly. The Cardiovascular Health Study. Circulation, 108, 166–70.CrossRefGoogle ScholarPubMed
Chambers, B. R. and Norris, J. W. (1986). Outcome in patients with asymptomatic neck bruits. New England Journal of Medicine, 315, 860–5.CrossRefGoogle ScholarPubMed
Chambless, L. E., Shahar, E., Sharrett, A. R., et al. (1996). Association of transient ischemic attack/stroke symptoms assessed by standardized questionnaire and algorithm with cerebrovascular risk factors and carotid artery wall thickness. American Journal of Epidemiology, 144, 857–66.CrossRefGoogle ScholarPubMed
Chambless, L. E., Heiss, G., Folsom, A. R., et al. (1997). Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) study, 1987–1993. American Journal of Epidemiology, 146, 483–94.CrossRefGoogle ScholarPubMed
Chambless, L. E., Folsom, A. R., Davis, V., et al. (2002). Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987–1988. American Journal of Epidemiology, 155, 38–47.CrossRefGoogle Scholar
Chambless, L. E., Folsom, A. R., Sharrett, A. R., et al. (2003). Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) study. Journal of Clinical Epidemiology, 56, 880–90.CrossRefGoogle Scholar
Chambless, L. E., Heiss, G., Shahar, E., Earp, , , M. J. and Toole, J. (2004). Prediction of ischemic stroke risk in the Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 160, 259–69.CrossRefGoogle ScholarPubMed
Craven, T. E., Ryu, J. E., Espeland, M. A., et al. (1990). Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis: A case control study. Circulation, 82, 1230–42.CrossRefGoogle ScholarPubMed
Crouse, J. R. (1993). B-mode in clinical trials: Answers and questions. Circulation, 88, 319–21.CrossRefGoogle ScholarPubMed
Crouse, J. R. and Thompson, C. J. (1993). An evaluation of methods for imaging and quantifying coronary and carotid lumen stenosis and atherosclerosis. Circulation, 87 (Suppl. II), II-17–II-33.Google ScholarPubMed
Crouse, J. R., Byington, R. P., Bond, M. G., et al. (1992). Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries: Design features of a clinical trial with atherosclerosis outcome. Controlled Clinical Trials, 13, 495–506.CrossRefGoogle ScholarPubMed
Crouse, J. R., III, Goldbourt, U., Evans, G., et al. (1994). Arterial enlargement in the Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) Cohort. Stroke, 25, 1354–9.CrossRefGoogle Scholar
Crouse, J. R., Byington, R. P., Bond, M. G., et al. (1995). Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). American Journal of Cardiology, 75, 455–9.CrossRefGoogle Scholar
Crouse, J. R., III, Goldbourt, U., Evans, G., et al. (1996). Risk Factors and Segment Specific Carotid Arterial Enlargement in the Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) Cohort. Stroke, 27, 69–75.CrossRefGoogle Scholar
Crouse, J. R., Tang, R., Espeland, M. A., et al. (2002). Associations of extracranial carotid atherosclerosis progression with coronary status and risk factors in patients with and without coronary artery disease. Circulation, 106, 2061–6.CrossRefGoogle ScholarPubMed
Crouse, J. R., Grobbee, D. E., O'Leary, D. H., et al. (2004). Measuring effects on intima media thickness: an evaluation of rosuvastatin in subclinical atherosclerosis – the rationale and methodology of the METEOR study. Cardiovascular Drugs and Therapy, 18, 231–8.CrossRefGoogle ScholarPubMed
D'Agostino, R. B., Burke, G., O'Leary, D., et al. (1996). Ethnic differences in carotid wall thickness. Stroke, 27, 1744–9.CrossRefGoogle ScholarPubMed
Davies, M. J. (1996). Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation, 94, 2013–20.CrossRefGoogle Scholar
Groot, E., Jukema, J. W., Montauban van Swijndregt, A. D., et al. (1998). B-mode ultrasound assessment of pravastatin treatment effect on carotid and femoral artery walls and its correlations with coronary arteriographic findings: a report of the Regression Growth Evaluation Statin Study (REGRESS). Journal of the American College of Cardiology, 31, 1561–7.CrossRefGoogle Scholar
Kleijn, M. J., Bots, M. L., Bak, A. A., et al. (1999). Hormone replacement therapy in perimenopausal women and 2-year change of carotid intima-media thickness. Maturitas, 32, 195–204.CrossRefGoogle ScholarPubMed
Del Sol, A. I., Moons, K. G., Hollander, M., et al. (2001). Is carotid intima-media thickness useful in cardiovascular disease risk assessment?Stroke, 32, 1532–8.CrossRefGoogle ScholarPubMed
Diez-Roux, A. V., Nieto, F. J., Comstock, G. W., Howard, G. and Szklo, M. (1995). The relationship of active and passive smoking to carotid atherosclerosis 12–14 years later. Preventive Medicine, 24, 48–55.CrossRefGoogle ScholarPubMed
Duggirala, R., Gonzalez Villalpando, C., O'Leary, D. H., Stern, M. P. and Blangero, J. (1996). Genetic basis of variation in carotid artery wall thickness. Stroke, 27, 833–7.CrossRefGoogle ScholarPubMed
Dwyer, J. H., Paul-Labrador, M. J., Fan, J., et al. (2004). Progression of carotid intima-media thickness and plasma antioxidants: the Los Angeles Atherosclerosis Study. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 313–19.CrossRefGoogle ScholarPubMed
Ebrahim, S., Papacosta, O., Whincup, P., et al. (1999). Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke, 30, 841–50.CrossRefGoogle ScholarPubMed
El-Barghouty, N., Nicolaides, A., Behal, V., Geroulakos, G. and Androulakis, A. (1996). The identification of the high risk carotid plaque. European Journal of Vascular and Endovascular Surgery, 11, 470–8.CrossRefGoogle ScholarPubMed
Espeland, M. A., Craven, T. E., Riley, W. A., et al. (1996). Reliability of longitudinal ultrasonographic measurements of carotid intimal-medial thicknesses. Stroke, 27, 480–5.CrossRefGoogle ScholarPubMed
Espeland, M. A., Tang, R., Terry, J. G., et al. (1999a). Associations of risk factors with segment specific intimal-medial thickness of the extracranial carotid artery. Stroke, 30, 1047–55.CrossRefGoogle Scholar
Espeland, M. A., Craven, T. E., Miller, M. E. and D'Agostino, R. (1999b). Modeling multivariate longitudinal data that are incomplete. Annals of Epidemiology, 9, 196–205.CrossRefGoogle Scholar
Espeland, M. A., Evans, G. W., Wagenknecht, L. E., et al. (2003). Site-specific progression of carotid artery intimal-medial thickness. Atherosclerosis, 171, 137–43.CrossRefGoogle ScholarPubMed
Espeland, M. A., O'Leary, D. H., Terry, J. G., et al. (2005). Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-b-hydroxy-b-methylglutaryl-CoA reductase inhibitors. Current Controlled Trials in Cardiovascular Medicine, 6, 1–6.CrossRefGoogle ScholarPubMed
Fontana, L., Meyer, T. E., Klein, S. and Holloszy, J. O. (2004). Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proceedings of the National Academy of Sciences UltrasoundA, 101, 6659–63.CrossRefGoogle ScholarPubMed
Fox, C. S., Polak, J. F., Chazaro, I., et al. (2003). Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham Heart Study. Stroke, 34, 397–401.CrossRefGoogle ScholarPubMed
Fried, L. P., Kronmal, R. A., Newman, A. B., et al. (1998). Risk factors for 5-year mortality in older adults. The Cardiovascular Health Study. Journal of the American Medical Association, 279, 585–92.CrossRefGoogle ScholarPubMed
Furberg, C. D., Adams, H. P., Applegate, W. B., et al. (1994). Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Circulation, 90, 1679–87.CrossRefGoogle ScholarPubMed
Gamble, G., Beaumont, B., Smith, H., et al. (1993). B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements. Atherosclerosis, 102, 163–73.CrossRefGoogle ScholarPubMed
Gariepy, J., Salomon, J., Denarie, N., et al. (1998). Sex and topographic differences in associations between large-artery wall thickness and coronary risk profile in a French working cohort: the AXA Study. Arteriosclerosis, Thrombosis and Vascular Biology, 18, 584–90.CrossRefGoogle Scholar
Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. and Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine 316, 1371–5.CrossRefGoogle ScholarPubMed
Gnasso, A., Motti, C., Irace, C., et al. (2000). Genetic variation in human stromelysin gene promoter and common carotid geometry in healthy male subjects. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1600–5.CrossRefGoogle ScholarPubMed
Hak, A. E., Stehouwer, C. D., Bots, M. L., et al. (1999). Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arteriosclerosis, Thrombosis and Vascular Biology, 19, 1986–91.CrossRefGoogle ScholarPubMed
Hanefeld, M., Chiasson, J. L., Koehler, C., et al. (2004). Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke, 35, 1073–8.CrossRefGoogle ScholarPubMed
Haney, C., Rainforth, M. and Salerno, J. (2000). Effects of stress reduction on carotid atherosclerosis in hypertensive African Americans. Stroke, 31, 568–73.Google Scholar
Hedblad, B., Wikstrand, J., Janzon, L., Wedel, H. and Berglund, G. (2001). Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: Main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circulation, 103, 1721–6.CrossRefGoogle Scholar
Heiss, G., Sharrett, A. R., Barnes, R., et al. (1991). Carotid atherosclerosis measured by B-mode ultrasound in populations: Associations with cardiovascular risk factors in the Arteriosclerosis risk in communities study study. American Journal of Epidemiology, 134, 250–6.CrossRefGoogle Scholar
Hennerici, M., Aulich, A., Sandmann, W. and Freund, H. J. (1981). Incidence of asymptomatic extracranial arterial disease. Stroke, 12, 750–8.CrossRefGoogle ScholarPubMed
Hodis, H. N., Mack, W. J., LaBree, L., et al. (1996). Reduction in carotid arterial wall thickness using lovastatin and dietary therapy. Annals of Internal Medicine, 124, 549–56.CrossRefGoogle ScholarPubMed
Hodis, H. N., Mack, W. J., LaBree, L., et al. (1998). The role of carotid arterial intima-media thickness in predicting clinical coronary events. Annals of International Medicine, 128, 262–9.CrossRefGoogle ScholarPubMed
Hodis, H. N., Mack, W. J., Lobo, R. A., et al. (2001). Estrogen in the Prevention of Atherosclerosis Trial Research Group. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Annals of Internal Medicine, 135, 939–53.CrossRefGoogle ScholarPubMed
Hoogerbrugge, N., Groot, E., Heide, L. H., et al. (2002). Doxazosin and hydrochlorothiazide equally affect arterial wall thickness in hypertensive males with hypercholesterolaemia (the DAPHNE study). Doxazosin Atherosclerosis Progression Study in Hypertensives in the Netherlands. The Netherlands Journal of Medicine, 60, 354–61.Google ScholarPubMed
Howard, G., Sharrett, A. R., Heiss, G., et al. (1993). Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound. Stroke, 24, 1297–304.CrossRefGoogle ScholarPubMed
Howard, G., O'Leary, D. H., Zaccaro, D., et al. (1996). Insulin sensitivity and atherosclerosis. Circulation, 93, 1809–17.CrossRefGoogle ScholarPubMed
Howard, G., O'Leary, D. H., Zaccaro, D., et al. (1996). Insulin sensitivity and atherosclerosis. Circulation, 93, 1809–17.CrossRefGoogle ScholarPubMed
Hsue, P. Y., Lo, J. C., Franklin, A., et al. (2004). Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. Circulation, 109, 1603–8.CrossRefGoogle ScholarPubMed
Humphries, S. E. and Morgan, L. (2004). Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. The Lancet Neurology, 3, 227–36.CrossRefGoogle ScholarPubMed
Hunt, K. J., Duggirala, R., Goring, H. H., et al. (2002). Genetic basis of variation in carotid artery plaque in the San Antonio Family Heart Study. Stroke, 33, 2775–80.CrossRefGoogle ScholarPubMed
Hwang, S., Ballantyne, C. M., Sharrett, A. R., et al. (1997). Circulating adhesions molecules VCAM-1, ICAM-1 and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) Study. Circulation, 96, 4219–25.CrossRefGoogle Scholar
Jartti, L., Ronnemaa, T., Kaprio, J., et al. (2002). Population-based twin study of the effects of migration from Finland to Sweden on endothelial function and intima-media thickness. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 832–7.CrossRefGoogle ScholarPubMed
Johnsen, S. H., Fosse, E., Joakimsen, O., et al. (2005). Monocyte count is a predictor of novel plaque formation: a 7-year follow-up study of 2610 persons without carotid plaque at baseline: the Tromso Study. Stroke, 36, 715–19.CrossRefGoogle ScholarPubMed
Josse, M. O., Touboul, P. J., Mas, J. L., Laplane, D. and Bousser, M. G. (1987). Prevalence of asymptomatic internal carotid artery stenosis. Neuroepidemiology, 6, 150–2.CrossRefGoogle ScholarPubMed
Kallikazaros, I., Tsioufis, C., Sideris, S., Stefanadis, C. and Toutouzas, P. (1999). Carotid artery disease as a marker for the presence of severe coronary artery disease in patients evaluated for chest pain. Stroke, 30, 1002–7.CrossRefGoogle ScholarPubMed
Kanters, S. D., Algra, A., Leeuwen, M. S. and Banga, J. D. (1997). Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke, 28, 665–71.CrossRefGoogle ScholarPubMed
Karason, K., Wikstrand, J., Sjostrom, L. and Wendelhag, I. (1999). Weight loss and progression of early atherosclerosis in the carotid artery: a four-year controlled study of obese subjects. International Journal of Obesity and Related Metabolic Disorders, 23, 948–56.CrossRefGoogle ScholarPubMed
Kodama, M., Yamasaki, Y., Sakamoto, K., et al. (2000). Antiplatelet drugs attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Thrombosis Research, 97, 239–45.CrossRefGoogle ScholarPubMed
Koga, N., Watanabe, K., Kurashige, Y., Sato, T. and Hiroki, T. (1999). Long-term effects of LDL apheresis on carotid arterial atherosclerosis in familial hypercholesterolaemic patients. Journal of Internal Medicine, 246, 35–43.CrossRefGoogle ScholarPubMed
Lakka, T. A., Lakka, H. M., Salonen, R., Kaplan, G. A. and Salonen, J. T. (2001a). Abdominal obesity is associated with accelerated progression of carotid atherosclerosis in men. Atherosclerosis, 154, 497–504.CrossRefGoogle Scholar
Lakka, T. A., Laukkanen, J. A., Rauramaa, R., et al. (2001b). Cardiorespiratory fitness and the progression of carotid atherosclerosis in middle-aged men. Annals of Internal Medicine, 134, 12–20.CrossRefGoogle Scholar
Lange, L. A., Bowden, D. W., Langefeld, C. D., et al. (2002). Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke, 33, 1876–81.CrossRefGoogle ScholarPubMed
Li, S., Chen, W., Srinivasan, S. R., et al. (2003). Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. Journal of the American Medical Association, 290, 2271–6.CrossRefGoogle ScholarPubMed
Lo, L. Y., Ford, C. S., McKinney, W. M. and Toole, J. F. (1986). Asymptomatic bruit, carotid and vertebrobasilar transient ischemic attacks – a clinical and ultrasonic correlation. Stroke, 17, 65–8.CrossRefGoogle ScholarPubMed
Lonn, E., Yusuf, S., Dzavik, V., et al. (2001). Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation, 103, 919–25.CrossRefGoogle Scholar
Lynch, J., Krause, N., Kaplan, G.. and Salonen, J. T (1997). Workplace demands, economic reward and progression of carotid atherosclerosis. Circulation, 96, 302–7.CrossRefGoogle ScholarPubMed
Lynch, J., Krause, N., Kaplan, G. A., Salonen, R. and Salonen, J. T. (1997). Workplace demands, economic reward, and progression of carotid atherosclerosis. Circulation, 96, 302–7.CrossRefGoogle ScholarPubMed
Mackinnon, A. D., Jerrard-Dunne, P., Sitzer, M., et al. (2004). Rates and determinants of site-specific progression of carotid artery intima-media thickness: the carotid atherosclerosis progression study. Stroke, 35, 2150–4.CrossRefGoogle ScholarPubMed
Mackinnon, A. D., Jerrard-Dunne, P., Sitzer, M., et al. (2004). Rates and determinants of site-specific progression of carotid artery intima-media thickness: the carotid atherosclerosis progression study. Stroke, 35, 2150–4.CrossRefGoogle ScholarPubMed
MacMahon, S., Sharpe, N., Gamble, G., et al. (1998). Effects of lowering average or below-average cholesterol levels on the progression of carotid atherosclerosis. Results of the LIPID atherosclerosis substudy. Circulation, 98, 1784–90.CrossRefGoogle Scholar
MacMahon, S., Sharpe, N., Gamble, G., et al. (2000). Randomized, placebo-controlled trial of the angiotensin-converting enzyme inhibitor, ramipril, in patients with coronary or other occlusive arterial disease. PART-2 Collaborative Research Group. Prevention of Atherosclerosis with Ramipril. Journal of the American College of Cardiology, 36, 438–43.CrossRefGoogle ScholarPubMed
Manolio, T. A., Kronmal, R. A., Burke, G. L., et al. (1994). Magnetic resonance abnormalities and cardiovascular disease in older adults. Stroke, 25, 318–27.CrossRefGoogle ScholarPubMed
Manolio, T. A., Kronmal, R. A., Burke, G. L., O'Leary, D. H. and Price, T. R. (1996). Short-term predictors of incident stroke in older adults. The Cardiovascular Health Study. Stroke, 27, 1479–86.CrossRefGoogle ScholarPubMed
Manolio, T. A., Boerwinkle, E., O'Donnell, C. J. and Wilson, A. F. (2004). Genetics of ultrasonographic carotid atherosclerosis. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 1567–77.CrossRefGoogle ScholarPubMed
Marcucci, R., Zanazzi, M., Bertoni, E., et al. (2003). Vitamin supplementation reduces the progression of atherosclerosis in hyperhomocysteinemic renal-transplant recipients. Transplantation, 75, 1551–5.CrossRefGoogle ScholarPubMed
Markussis, V., Beshyah, S. A., Fisher, C., et al. (1992). Detection of premature atherosclerosis by high-resolution ultrasonography in symptom-free hypopituitary adults. Lancet, 340, 1188–92.CrossRefGoogle ScholarPubMed
Matsumoto, K., Sera, Y., Abe, Y., et al. (2004). Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Research and Clinical Practice, 64, 225–8.CrossRefGoogle ScholarPubMed
McNeill, A. M., Rosamond, W. D., Girman, C. J., et al. (2004). Prevalence of coronary heart disease and carotid arterial thickening in patients with the metabolic syndrome (The Arteriosclerosis risk in communities study Study). American Journal of Cardiology, 94, 1249–54.CrossRefGoogle Scholar
Melnick, S. L., Shahar, E., Folsom, A. R., et al. (1993). Past infection by chlamydia pneumoniae strain TWAR and asymptomatic carotid atherosclerosis. American Journal of Medicine, 95, 499–504.CrossRefGoogle ScholarPubMed
Mercuri, M., Bond, M. G., Sirtori, C. R., et al. (1996). Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic Mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. American Journal of Medicine, 101, 627–34.CrossRefGoogle Scholar
Miyazaki, H., Matsuoka, H., Cooke, J. P., et al. (1999). Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation, 99, 1141–6.CrossRefGoogle ScholarPubMed
Nagata-Sakurai, M., Inaba, M., Goto, H., et al. (2003). Inflammation and bone resorption as independent factors of accelerated arterial wall thickening in patients with rheumatoid arthritis. Arthritis and Rheumatism, 48, 3061–7.CrossRefGoogle ScholarPubMed
Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Diabetes Control and Complications Trial; Epidemiology of Diabetes Interventions and Complications Research Group. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. New England Journal of Medicine, 348, 2294–303.Google ScholarPubMed
Nordstrom, C. K., Dwyer, K. M., Merz, C. N., Shircore, A. and Dwyer, J. H. (2003). Leisure time physical activity and early atherosclerosis: the Los Angeles Atherosclerosis Study. American Journal of Medicine, 115, 19–25.CrossRefGoogle ScholarPubMed
North, K. E., MacCluer, J. W., Devereux, R. B., et al. (2002). Heritability of carotid artery structure and function: the Strong Heart Family Study. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 1698–703.CrossRefGoogle ScholarPubMed
O'Leary, D. H., Polak, J. F., Kronmal, R. A., et al. (1992). Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. Stroke, 23, 1752–60.CrossRefGoogle ScholarPubMed
O'Leary, D. H., Polak, J. F., Kronmal, R. A., et al. (1999). Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. New England Journal of Medicine, 340, 14–22.CrossRefGoogle ScholarPubMed
Pignoli, P., Tremoli, E., Poli, A., Oreste, P. and Paoletti, R. (1986). Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation, 74, 1399–406.CrossRefGoogle ScholarPubMed
Pitt, B., Byington, R. P., Furberg, C. D., et al. (2000). Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. PREVENT Investigators. Circulation, 102, 1503–10.CrossRefGoogle ScholarPubMed
Polak, J. F., Kronmal, R. A., Tell, G. S., et al. (1996). Compensatory increase in common carotid artery diameter. Stroke, 27, 2012–15.CrossRefGoogle ScholarPubMed
Polak, J. R., Shemanski, L., O'Leary, D. H., et al. (1998). Hypoechoic plaque at Ultrasound of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Radiology, 208, 649–54.CrossRefGoogle ScholarPubMed
Postiglione, A., Rubba, P., Simone, B., et al. (1985). Carotid atherosclerosis in familial hypercholesterolemia. Stroke, 16, 658–61.CrossRefGoogle ScholarPubMed
Price, T. R., Manolio, T. A., Kronmal, R. A., et al. (1997). Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults. Stroke, 28, 1158–64.CrossRefGoogle ScholarPubMed
Psaty, B. M., Furberg, C. D., Kuller, L. H., et al. (1999). Traditional risk factors and subclinical disease measures as predictors of first myocardial infarction in older adults. The Cardiovascular Health Study. Archives of Internal Medicine, 159, 1339–47.CrossRefGoogle ScholarPubMed
Raitakari, O. T., Juonala, M., Kahonen, M., et al. (2003). Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. Journal of the American Medical Association, 290, 2277–83.CrossRefGoogle ScholarPubMed
Ranke, C., Hecker, H., Creutzig, A. and Alexander, K. (1993). Dose-dependent effect of aspirin on carotid atherosclerosis. Circulation, 87, 1873–9.CrossRefGoogle ScholarPubMed
Roman, M. J., Shanker, B. A., Davis, A., et al. (2003). Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. New England Journal of Medicine, 349, 2399–406.CrossRefGoogle ScholarPubMed
Sabeti, S., Exner, M., Mlekusch, W., et al. (2005). Prognostic impact of fibrinogen in carotid atherosclerosis: nonspecific indicator of inflammation or independent predictor of disease progression?Stroke, 36, 1400–4.CrossRefGoogle ScholarPubMed
Salomaa, V., Stinson, V., Kark, J. D., et al. (1995). Association of fibrinolytic parameters with early atherosclerosis. The Arteriosclerosis risk in communities study Study. Circulation, 15, 1269–79.Google Scholar
Salonen, R. and Salonen, J. T. (1990). Progression of carotid atherosclerosis and its determinants: a population-based ultrasonography study. Atherosclerosis, 81, 33–40.CrossRefGoogle ScholarPubMed
Salonen, J. T. and Salonen, R. (1993). Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation, 87 (Suppl. II), II-56–II.Google ScholarPubMed
Salonen, R., Seppanen, K., Rauramaa, R. and Salonen, J. T. (1988). Prevalence of carotid atherosclerosis and serum cholesterol levels in eastern Finland. Arteriosclerosis, 8, 788–92.CrossRefGoogle ScholarPubMed
Salonen, R., Tervahauta, M., Salonen, J. T., et al. (1994). Ultrasonographic manifestations of common carotid atherosclerosis in elderly Eastern Finnish men. Arteriosclerosis and Thrombosis, 14, 1631–40.CrossRefGoogle ScholarPubMed
Salonen, R., Nyyssonen, K., Porkkala, E., et al. (1995). Kuopio Atherosclerosis Prevention Study (KAPS). Circulation, 92, 1758–64.CrossRefGoogle Scholar
Salonen, R. M., Nyyssonen, K., Kaikkonen, J., et al. (2003). Antioxidant Supplementation in Atherosclerosis Prevention Study. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation, 107, 947–53.CrossRefGoogle Scholar
Sawayama, Y., Shimizu, C., Maeda, N., et al. (2002). Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). Journal of the American College of Cardiology, 39, 610–16.CrossRefGoogle Scholar
Schillinger, M., Exner, M., Mlekusch, W., et al. (2005). Inflammation and Carotid Artery – Risk for Atherosclerosis Study (ICARAS). Circulation, 111, 2203–9.CrossRefGoogle Scholar
Schott, L. L., Wildman, R. P., Brockwell, S., et al. (2004). Segment-specific effects of cardiovascular risk factors on carotid artery intima-medial thickness in women at midlife. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 1951–6.CrossRefGoogle ScholarPubMed
Selhub, J., Jacques, P. F., Bostom, A. G., et al. (1995). Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. New England Journal of Medicine, 332, 286–91.CrossRefGoogle ScholarPubMed
Sharrett, A. R., Sorlie, P. D., Chambless, L. E., et al. (1999). Relative importance of various risk factors for asymptomatic carotid atherosclerosis versus coronary heart disease incidence. American Journal of Epidemiology, 149, 843–52.CrossRefGoogle ScholarPubMed
Sidhu, J. S., Kaposzta, Z., Markus, H. S. and Kaski, J. C. (2004). Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 930–4.CrossRefGoogle ScholarPubMed
Simon, A., Gariepy, J., Moyse, D. and Levenson, J. (2001). Differential effects of nifedipine and co-amilozide on the progression of early carotid wall changes. Circulation, 103, 2949–54.CrossRefGoogle ScholarPubMed
Smilde, T. J., Wissen, S., Wollersheim, H., et al. (2001). Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomized, double-blind trial. Lancet, 357, 577–81.CrossRefGoogle Scholar
Swan, L., Birnie, D. H., Inglis, G., Connell, J. M. and Hillis, W. S. (2003). The determination of carotid intima medial thickness in adults – a population-based twin study. Atherosclerosis, 166, 137–41.CrossRefGoogle ScholarPubMed
Sztajzel, R., Momjian, S., Momjian-Mayor, I., et al. (2005). Stratified gray-scale median analysis and color mapping of the carotid plaque: correlation with endarterectomy specimen histology of 28 patients. Stroke, 36, 741–5.CrossRefGoogle ScholarPubMed
Tang, R., Hennig, M., Thomasson, B., et al. (2000). Baseline reproducibility of B-mode ultrasonic measurement of carotid artery intima-media thickness: the European Lacidipine Study on Atherosclerosis (ELSA). Journal of Hypertension, 18, 197–201.CrossRefGoogle Scholar
Taylor, A. J., Kent, S. M., Flaherty, P. J., et al. (2002). ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation, 106, 2055–60.CrossRefGoogle ScholarPubMed
Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. and Grace, K. A. (2004). Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation, 110, 3512–17.CrossRefGoogle ScholarPubMed
Tell, G. S., Evans, G. W., Folsom, A. R., et al. (1994). Dietary fat intake and carotid artery wall thickness: The Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) Study. American Journal of Epidemiology, 139, 979–89.CrossRefGoogle ScholarPubMed
Terry, J. G., Tang, R., Espeland, M. A., et al. (2003). Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects. Circulation, 107, 1146–51.CrossRefGoogle ScholarPubMed
Tracy, R. P., Bovill, E. G., Yanez, D., et al. (1995). Fibrinogen and factor VIII, but not factor VII, are associated with measures of subclinical cardiovascular disease in the elderly. Results from the Cardiovascular Health Study. Arteriosclerosis, Thrombosis and Vascular Biology, 15, 1269–79.CrossRefGoogle Scholar
Meer, I. M., Maat, M. P., Bots, M. L., et al. (2002). Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: the Rotterdam Study. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 838–42.CrossRefGoogle ScholarPubMed
Meer, I. M., Maat, M. P., Hak, A. E., et al. (2002). C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree: the Rotterdam Study. Stroke, 33, 2750–5.CrossRefGoogle Scholar
Meer, I. M., Iglesias del Sol, A., Hak, A. E., et al. (2003). Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke, 34, 2374–9.CrossRefGoogle ScholarPubMed
Meer, I. M., Iglesias del Sol, A., Hak, A. E., et al. (2003). Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke, 34, 2374–9.CrossRefGoogle ScholarPubMed
Vermeer, S. E., Heijer, T., Koudstaal, P. J., et al. (2003). Rotterdam Scan Study. Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke, 34, 392–6.CrossRefGoogle ScholarPubMed
Vermeulen, E. G., Stehouwer, C. D., Twisk, J. W., et al. (2000). Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet, 355, 517–22.CrossRefGoogle ScholarPubMed
Wallenfeldt, K., Bokemark, L., Wikstrand, J., Hulthe, J. and Fagerberg, B. (2004). Apolipoprotein B/apolipoprotein A-I in relation to the metabolic syndrome and change in carotid artery intima-media thickness during 3 years in middle-aged men. Stroke, 35, 2248–52.CrossRefGoogle ScholarPubMed
Wallenfeldt, K., Hulthe, J. and Fagerberg, B. (2005). The metabolic syndrome in middle-aged men according to different definitions and related changes in carotid artery intima-media thickness (Intima media thickness) during 3 years of follow-up. Journal of Internal Medicine, 258, 28–37.CrossRefGoogle ScholarPubMed
Wang, T. J., Nam, B. H., Wilson, P. W., et al. (2002). Association of C-reactive protein with carotid atherosclerosis in men and women: the Framingham Heart Study. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 1662–7.CrossRefGoogle ScholarPubMed
Wiklund, O., Hulthe, J., Wikstrand, J., et al. (2002). Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke, 33, 572–7.CrossRefGoogle ScholarPubMed
Wildman, R. P., Schott, L. L., Brockwell, S., Kuller, L. H. and Sutton-Tyrrell, K. (2004). A dietary and exercise intervention slows menopause-associated progression of subclinical atherosclerosis as measured by intima-media thickness of the carotid arteries. Journal of the American College of Cardiology, 44, 579–85.CrossRefGoogle ScholarPubMed
Willeit, J., Kiechl, S., Oberhollenzer, F., et al. (2000). Distinct risk profiles of early and advanced atherosclerosis: prospective results from the Bruneck Study. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 529–37.CrossRefGoogle ScholarPubMed
Willeit, J., Kiechl, S., Oberhollenzer, F., et al. (2000). Distinct risk profiles of early and advanced atherosclerosis: prospective results from the Bruneck Study. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 529–37.CrossRefGoogle ScholarPubMed
Wilson, P. W. F., Hoeg, J. M., D'Agostino, R. B., et al. (1997). Cumulative effects of high cholesterol levels, high blood pressure, and cigarette smoking on carotid stenosis. New England Journal of Medicine, 337, 516–22.CrossRefGoogle ScholarPubMed
Wong, M., Edelstein, J., Wollman, J. and Bond, M. G. (1993). Ultrasonic-pathological comparison of the human arterial wall. Arteriosclerosis and Thrombosis, 13, 482–6.CrossRefGoogle ScholarPubMed
Wu, H., Dwyer, K. M., Fan, Z., et al. (2003). Dietary fiber and progression of atherosclerosis: the Los Angeles Atherosclerosis Study. American Journal of Clinical Nutrition, 78, 1085–91.CrossRefGoogle ScholarPubMed
Xiang, A. H., Azen, S. P., Buchanan, T. A., et al. (2002). Heritability of subclinical atherosclerosis in Latino families ascertained through a hypertensive parent. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 843–8.CrossRefGoogle ScholarPubMed
Zanchetti, A., Rosei, E. A., Dal Palu, C., et al. (1998). The Verapamil in Hypertension and Atherosclerosis Study (VHAS): results of long-term randomized treatment with either verapamil or chlorthalidone on carotid intima-media thickness. Journal of Hypertension, 16, 1667–76.CrossRefGoogle ScholarPubMed
Zanchetti, A., Bond, M. G., Hennig, M., et al. (2002). European Lacidipine Study on Atherosclerosis investigators. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation, 106, 2422–7.CrossRefGoogle Scholar
Zanchetti, A., Bond, M. G., Hennig, M., et al. (2004). Absolute and relative changes in carotid intima-media thickness and atherosclerotic plaques during long-term antihypertensive treatment: further results of the European Lacidipine Study on Atherosclerosis (ELSA). Journal of Hypertension, 22, 1201–12.CrossRefGoogle Scholar
Zanchetti, A., Crepaldi, G., Bond, M. G., et al. (2004). Different Effects of Antihypertensive Regimens Based on Fosinopril or Hydrochlorothiazide With or Without Lipid Lowering by Pravastatin on Progression of Asymptomatic Carotid Atherosclerosis: Principal Results of PHYLLIS – A Randomized Double-Blind Trial. Stroke, 35, 2807–12.CrossRefGoogle ScholarPubMed
Zannad, F., Visvikis, S., Gueguen, R., et al. (1998). Genetics strongly determines the wall thickness of the left and right carotid arteries. Human Genetics, 103, 183–8.CrossRefGoogle ScholarPubMed
Zannad, F. and Benetos, A. (2003). Genetics of intima-media thickness. Current Opinion in Lipidology, 14, 191–200.CrossRefGoogle ScholarPubMed
Zureik, M., Touboul, P. J., Bonithon-Kopp, C., et al. (1991). Cross-sectional and 4-year longitudinal associations between brachial pulse pressure and common carotid intima-media thickness in a general population. The EVA study. Stroke, 30, 550–5.CrossRefGoogle Scholar
Zureik, M., Touboul, P. J., Bonithon-Kopp, C., et al. (1999). Cross-sectional and 4-year longitudinal associations between brachial pulse pressure and common carotid intima-media thickness in a general population. The EVA study. Stroke, 30, 550–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×