Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T19:24:37.014Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 September 2009

Odd M. Faltinsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarsnes, J. V., 1984, Current forces on ships. Dr.ing. thesis, Report UR-84-39, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Aarsnes, J. V., Faltinsen, O. M., Pettersen, B., 1985, Application of a vortex tracking method to current forces on ships. In Proc. Conf. Separated Flow around Marine Structures, pp. 309–46, Trondheim: Nor. Inst. Technol
Abbott, J. H., Doenhoff, A. E., 1959, Theory of Wing Sections, New York: Dover Publications, Inc
Abramowitz, M., Stegun, I., 1964, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover Publications Inc
Abramson, N., 1974, Structural dynamics of advanced marine vehicles, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price., pp. 344–57, London: Mechanical Engineering Publications Ltd
Adegeest, L. J. M., 1995, Nonlinear hull girder loads, Ph.D. thesis, Delft University of Technology, Faculty Mech. Eng. and Mar. Tech., Delft
Allison, J., 1993, Marine waterjet propulsion, Trans. SNAME, 101, 275–335Google Scholar
Anderson, J. D., 2001, Fundamentals of Aerodynamics, third edition, New York: McGraw-Hill Book Company
Andrewartha, M., Doctors, L., 2001, How many foils? A study of multiple hydrofoil configurations. In Proc. FAST 2001, Vol. 3, pp. 79–86, London: The Royal Institution of Naval Architects
Ankudinov, V., Kaplan, P., Jacobsen, B. K., 1993, Assessment and principal structure of the modular mathematical model for ship maneuverability prediction and real-time maneuvering simulations, In Proc. MARSIM'93, St. John's, Newfoundland
Arai, M., Myanchi, T., 1998, Numerical study of the impact of water on cylindrical shells, considering fluid-structure interactions, In Proc. PRADS'98, ed. M. C. W. Oosterveld, S. G. Tan, pp. 59–68, London and New York: Elsevier Applied Science
Armand, J. L., Cointe, R., 1986, Hydrodynamic impact analysis of a cylinder, In Proc. Fifth Int. Offshore Mech. and Arctic Engng. Symp., Vol. 1, pp. 609–34, ASME
Auf'M Keller, W. H., 1973, Extended diagrams for determining the resistance and required power for single-screw ships, Intern. Shipb. Progr., 20, 133–42CrossRefGoogle Scholar
Baarholm, R. J., 2001, Theoretical and experimental studies of wave impact underneath decks of offshore platforms, Dr. Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Baba, E., 1969, Study on separation of ship resistance components, Mitsubishi Technical Bulletin, No. 59
Bailey, D. S., 1976, The NPl high speed round bilge displacement hull series, Maritime Technology Monograph No. 4, London, UK: RINA
Baird, N., 1998, The World Fast Ferry Market, Melbourne, Australia: Baird Publications
Bal, S., Kinnas, S. A., Lee, H., 2001, Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface, J. Ship Res., 45, 1, 34–49Google Scholar
Barcellona, M., Landrini, M., Greco, M., Faltinsen, O. M., 2003, An experimental investigation of bow water shipping, J. Ship Res., 47, 4, 327–46Google Scholar
Barringer, I. E., 1998, The hydrodynamics of ship sections entering and exiting a fluid, Ph.D. thesis, Dept. of Mathematics, Brunel University
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press
Beek, T., 1992, Application limits for propellers at high speeds, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 121–32, Amsterda Elsevier Science Publishers BV
Berlekom, W. B., Goddard, T. A., 1972, Maneuvering of large tankers, Trans. SNAME, 80, 264–98Google Scholar
Berstad, A. J., Faltinsen, O. M., Larsen, C. M., 1997, Fatigue crack growth in side longitudinals, In Proc. NAV&HSMV, pp. 5.3–15, Naples: Dipartimento Ingeneria-Università di Napoli “Federico II.”
Berstad, A. J., Larsen, C. M., 1997, Fatigue crack growth in the hull structure of high speed vessels, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 255–62, South Yarra, Victoria, and London: Baird Publications
Bertram, V., 1999, Numerical investigation of steady flow effects in three-dimensional seakeeping computations. In Proc. 22nd Symposium on Naval Hydrodynamics, Washington D. C.: Office of Naval Research–Dept. of the Navy
Bertram, V., Iwashita, H., 1996, Comparative evaluation of various methods to predict seakeeping of fast ships, Schiff & Hafen, 48, 6, 54–8Google Scholar
Besch, P. K., Liu, Y-N, 1972, Bending flutter and torsional flutter of flexible hydrofoil struts, In Proc. Ninth Symposium on Naval Hydrodynamics, ed. R. Brard, A. Castera, Vol. 1, pp. 343–400, Arlington, Va.: Office of Naval Research–Department of the Navy
Bethwaite, F., 1996, High Performance Sailing, Shrewsbury, England: Waterline
Beukelman, W., 1991, Slamming on forced oscillating wedges at forward speed, Part I: Test results, Rep. no. 888, Delft University of Technology, Ship Hydromechanics Laboratory, Netherlands
Billingham, J., King, A. C., 2000, Wave Motion, Cambridge: Cambridge University Press
Birkhoff, G., Zarantonello, E. H., 1957, Jets, Wakes and Cavities, New York: Academic Press Inc
Bishop, R. E. D., Price, W. G., 1979, Hydroelasticity of Ships, Cambridge: Cambridge University Press
Bisplinghoff, R. L., Ashley, H., Halfman, R. L., 1996, Aeroelasticity, New York: Dover Publications
Blevins, R. D., 1990, Flow Induced Vibration, Malabar, Florida: Krieger Publishing Company
Blok, J. J., Beukelman, W., 1984, The high speed displacement ship systematic series hull forms, Trans. SNAME, 92, 125–50Google Scholar
Blount, D. L., 1997, Design of propeller tunnels for high-speed craft, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 151–6, South Yarra, Victoria, and London: Baird Publications
Blount, D. L., Codega, L. T., 1992, Dynamic stability of planing boats, Marine Technology, 29, 1, 4–12Google Scholar
Bouard, R., Coutanceau, M., 1980, The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104, J. Fluid Mech., 101, 3, 583–607CrossRefGoogle Scholar
Bowden, B., Davison, N., 1974, Resistance increments due to hull roughness associated with form factor extrapolation methods, NPL Ship Division Report TM 380
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford and New York: Oxford University Press
Breslin, J. P., 1957, Application of ship-wave theory to the hydrofoil of finite span, J. Ship Res., 1, 1, 27–55Google Scholar
Breslin, J. P., 1958, Discussion of the paper by K. L. Wadlin, In Proc. Second Symp. on Naval Hydrodynamics, pp. 434–40, Washington, D. C.: Office of Naval Research–Department of the Navy
Breslin, J. P., 1994, Hydrofoil ships – fantasies, facts and fysiks, DCAMM Anniversary Volume, Danish Centre for Appl. Math. and Mech., Techn. Univ. of Denmark, Lyngby
Breslin, J. P., Andersen, P., 1994, Hydrodynamics of Ship Propellers, Cambridge: Cambridge University Press
Brix, J., 1993, Maneuvering Technical Manual, Hamburg: Seehafen Verlag GmbH
Brizzolara, S., 2003, Hydrodynamic analysis of interceptors with computational fluid dynamics methods, In Proc. FAST'2003, ed. P. Cassella, Vol. III, Session E, pp. 49–56. Naples: Dipartimento Ingegneria Navale–Universitè di Napoli “Federico II.”
Brug, J. B., Beukelman, W., Prins, G. J., 1971, Hydrodynamic forces on a surface piercing flat plate, Report no. 325, Shipbuilding Laboratory, Delft University of Technology, Delft, The Netherlands
Bryant, J. P., 1983, Waves and wave groups in deep water, In Nonlinear Waves, ed. L. Debnath, Ch. 6, pp. 100–15, Cambridge: Cambridge University Press
Buckingham, E., 1915, Model experiments and the forms of empirical equations, Trans. ASME, 37, 263–96Google Scholar
Carlton, J. S., 1994, Marine Propellers and Propulsion, Oxford: Butterworth-Heineman
Carstensen, C., 1983, Beitrag zur Berechnung von ebenen Einlaufströmungen, Dissertation, Technische Universität Berlin, D83, März
Casanova, R. L., Latorre, R., 1992, The achievements of high performance in marine vehicles over the period 1970–1990, In Proc. HPMV'92, pp. O/A61–O/A66, Alexandria, Va.: American Society of Naval Engineers
Cebeci, T., 2004, Analysis of Turbulent Flows, second revised and expanded edition, Oxford: Elsevier
Celano, T., 1998, The prediction of porpoising inception for modern planing craft, Trans. SNAME, 106, 269–92Google Scholar
Chapman, R. B., 1972, Hydrodynamic drag of semisubmerged ships, J. of Basic Eng., Trans. ASME, 94 Series D, 4, 879–84CrossRefGoogle Scholar
Chapman, R. B., 1976, Free surface effects for yawed surface-piercing plates, J. Ship Res., 20, 3, 125–36Google Scholar
Chezhian, M., 2003, Three-dimensional analysis of slamming, Dr.ing thesis, Dept. of Marine Technology, NTNU, Trondheim, Norway
Cleary, W. A., Robertson, J. B., Yagle, R. A., 1971, The results and significance of strength studies of Great Lakes bulk ore carrier, Edward L. Ryerson, In SNAME Symp. on Hull Stresses in Bulk Carriers in the Great Lakes and Gulf of St. Lawrence Wave Environment, Paper G, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Clement, E. P., Blount, D. L., 1963, Resistance tests of a systematic series of planing hull forms, Trans. SNAME, 71, 201–77Google Scholar
Clement, E. P., Koelbel, J. G., 1992, Optimized design for stepped planing monohulls and catamarans, In Proc. HPMV'92, pp. PC35–PC44, Alexandria, Va.: American Society of Naval Engineers
Clough, R. W., Penzien, J., 1993, Dynamics of Structures, second edition, New York: McGraw-Hill, Inc
Cohen, S., Blount, D., 1986, Research plan for the investigation of dynamic instability of small high-speed craft, Trans. SNAME, 94, 197–214Google Scholar
Cointe, R., 1991, Free surface flows close to a surface-piercing body, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 319–34, Philadelphia: Society for Industrial and Applied Mathematics
Colagrossi, A., Lugni, C., Landrini, M., Graziani, G., 2001, Numerical and experimental transient tests for ship seakeeping, Int. Journal Off. and Ocean Struct., 11, 67–73Google Scholar
Crane, C. L., Eda, H., Landsburg, A., 1989, Controllability, In Principles of Naval Architecture, Vol. III, Chapter IX, ed. E. V. Lewis, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Cummins, W. E., 1962, The impulse response function and ship motions, Schiffstechnik, 9, 47, 101–9Google Scholar
Cusanelli, D. S., Karafiath, G., 1997, Integrated wedge-flap for enhanced powering performance, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 751–64, South Yarra, Victoria, and London: Baird Publications
Day, J. P., Haag, R. J., 1952, Planing Boat Porpoising, New York: Webb Institute of Naval Architecture
Day, S., Clelland, D., Nixon, E., 2003, Experimental and numerical investigation of “Arrow” Trimarans, In Proc. FAST 2003, ed. P. Casella, Vol. III, Session D2, pp. 23–36, Naples: Dipartimenta Ingegneria navale, Universtà di Napoli “Federico II.”
Delany, N. K., Sorensen, N. E., 1953, Low-speed drag of cylinders of various shapes. Washington, D. C.: NACA Technical Note 3038
Divitiis, N., Socio, L. M., 2002, Impact of floats on the water, J. Fluid Mech., 471, 365–79CrossRefGoogle Scholar
Dobrovol'skaya, Z. N., 1969, On some problems of fluid with a free surface, J. Fluid Mech., 36, 4, 805–29CrossRefGoogle Scholar
Doctors, L. J., 1978, Hydrodynamic power radiated by a heaving and pitching air-cushion vehicle, J. Ship Res., 22, 2, 67–79Google Scholar
Doctors, L. J., 1992, The use of pressure distributions to model the hydrodynamics of air-cushion vehicles and surface effect ships, In Proc. HPMV'92, pp. SES56–SES72, Alexandria, Va.: American Society of Naval Engineers
Doctors, L. J., 2003, Hydrodynamics of the flow behind a transom stern, In Proc. Twenty-Ninth Israel Conference on Mechanical Engineering, Paper 20–1, 11 pp., Haifa, Israel
Doctors, L. J., Day, A. H., 1997, Resistance prediction for transom-stern vessels, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 743–50, South Yarra, Victoria, and London: Baird Publications
Doctors, L. J., Sharma, S. D., 1972, The wave resistance of an air-cushion vehicle in steady and accelerated motion, J. Ship Res., 16, 4, 248–60Google Scholar
Dorf, R. C., Bishop, R. H., 1998, Modern Control Systems, Menlo Park, Calif.: Addison Wesley Longman, Inc
Doyle, R., Whittaker, T. J. T., Elsasser, B., 2001, A study of fast ferry wash in shallow water, In Proc. FAST 2001, Vol. 1, pp. 107–20, London: The Royal Institution of Naval Architects
Eda, H., 1980, Rolling and steering performance of high speed ships – simulation studies of yaw-roll-rudder coupled instability, In Proc. 13th Symp. on Naval Hydrodynamics, pp. 115–31, Washington, D. C.: Office of Naval Research–Department of the Navy
Etkin, B., 1959, Dynamics of Flight: Stability and Control, New York: John Wiley & Sons, Inc
Falck, S., 1991, Seakeeping of foil catamarans. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 209–21, Trondheim: Tapir Publishers
Faltinsen, O. M., 1972, Wave forces on a restrained ship in head-sea wave, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, vol. 2, pp. 1763–844. Arlington, Va.: Office of Naval Research–Department of the Navy
Faltinsen, O. M., 1983, Bow flow and added resistance of slender ships at high Froude number and low wavelengths, J. Ship Res., 27, 160–71Google Scholar
Faltinsen, O. M., 1990, Sea Loads on Ships and Offshore Structures, Cambridge: Cambridge University Press
Faltinsen, O. M., 1997, The effect of hydroelasticity on slamming, Phil. Trans. R. Soc. Lond. A, 355, 575–91CrossRefGoogle Scholar
Faltinsen, O. M., 1999, Water entry of a wedge by hydroelastic orthotropic plate theory, J. Ship Res., 43, 3, 180–193Google Scholar
Faltinsen, O. M., 2000, Water impact in ship and ocean engineering, In Proc. Fourth Int. Conf. on Hydrodyn., ed. Y. Goda, M. Ikehata, K. Suzuki, pp. 17–36, Yokohama: ICHD2000 Local Organizing Committee
Faltinsen, O. M., 2001, Steady and vertical dynamic behaviour of prismatic planning hulls, In Proc. 22ndIntern Conf. HADMAR 2001, pp. 89–104, Varna, Bulgaria: Bulgarian Ship Hydrodynamics Centre
Faltinsen, O. M., Helmers, J. B., Minsaas, K. J., Zhao, R., 1991a, Speed loss and operability of catamarans and SES in a seaway, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan. Vol. 2, pp. 709–25, Trondheim: Tapir Publishers
Faltinsen, O. M., Hoff, J. R., Kvålsvold, J., Zhao, R., 1992, Global wave loads on high-speed catamarans, In Proc. PRADS'92, ed. J. B. Caldwell, G. Ward, Vol. 1, pp. 1.360–1.375, London and New York: Elsevier Applied Science
Faltinsen, O. M., Holden, K. O., Minsaas, K. J., 1991b, Speed loss and operational limits of high-speed marine vehicles, In Proc. IMAS'91 – High Speed Marine Transportation, pp. 13–21, London: The Institute of Marine Engineers
Faltinsen, O. M., Kvålsvold, J., Aarsnes, J. V., 1997, Wave impact on a horizontal elastic plate, J. Mar. Sci. Technol., 2, 2, 87–100CrossRefGoogle Scholar
Faltinsen, O. M., Landrini, M., Greco, M., 2004, Slamming in marine applications, J.Eng. Math., 48, 187–217CrossRefGoogle Scholar
Faltinsen, O. M., Minsaas, K., Liapis, N., Skjørdal, S. O., 1980, Prediction of resistance and propulsion of a ship in a seaway, In Proc. 13th Symp. on Naval Hydrodynamics, ed. T. Inui, pp. 505–30. Tokyo: The Shipbuilding Research Association of Japan
Faltinsen, O. M., Pettersen, B., 1983, Vortex shedding around two-dimensional bodies at high Reynolds number, In Proc. 14th Symp. on Naval Hydrodynamics, pp. 1171–213, Washington, D. C.: National Academy Press
Faltinsen, O. M., Svensen, T. E., 1990, Incorporation of seakeeping theories on CAD, In Proc. of Int. Symp. computational fluid dynamics and CAD in Ship Design, ed. G. van Oortmersen, pp. 147–64, Amsterdam: Elsevier Science Publishers, B.V
Faltinsen, O. M., Zhao, R., 1991a, Numerical predictions of ship motions at high forward speed, Phil. Trans. R. Soc. Lond. A, 334, 241–52CrossRefGoogle Scholar
Faltinsen, O. M., Zhao, R., 1991b, Flow prediction around high-speed ships in waves, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 265–88, Philadelphia: Society for Industrial and Applied Mathematics
Faltinsen, O. M., Zhao, R., 1998, Water entry of ship sections and axisymmetric bodies, In AGARD Report 827 High Speed Body Motions in Water, pp. 24-1–24-11, Neuilly-Sur-Seine, Cedex, France: AGARD/NATO
Feifel, M. W., 1981, Advanced numerical methods for hydrofoil systems design and experimental verification, In Proc. Third Int. Conf. on Num. Ship Hydrodynamics, ed. J-C. Dern, H. J. Haussling, pp. 365–74, Paris: Bassin d'Essais des Carénes
Fischer, H., Matjasic, K., 1999, The Hoverwing technology – bridge between WIG and ACV, In RTO Meeting Proc. 15 – Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 30-1–30-7, Neuilly-Sur-Seine, Cedex, France: Res. and Techn. Org., NATO
Flagg, C. N., Newman, J. N., 1971, Sway added-mass coefficients for rectangular profiles in shallow water, J. Ship Res., 15, December, 257–65Google Scholar
Fontaine, E., Faltinsen, O. M., Cointe, R., 2000, New insight into generation of ship bow waves, J. Fluid Mech., 421, 15–38CrossRefGoogle Scholar
Førde, M., Ørbekk, E., Kubberud, N., 1991, Computational fluid dynamics applied to high speed craft with special attention to water intake for water jets, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan., Vol. 1, pp. 69–89, Trondheim: Tapir Publishers
Fossen, T. I., 2002, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Trondhei Marine Cybernetics AS
Fridsma, G., 1969, A systematic study of the rough-water performance of planing boats, Report 1275, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
Fridsma, G., 1971, A systematic study of the rough-water performance of planing boats; part 2, irregular waves, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
Froude, W. W., 1877, Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body, Trans. Inst. of Naval Arch., London, UK
Fujino, M., 1968, Experimental studies on ship maneuverability in restricted waves – part I, Intern. Shipbuilding Progr., 15, 168, 279–301CrossRefGoogle Scholar
Fujino, M., 1976, Maneuverability in restricted waters: state of the art, report no. 184, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Fujino, M., 1996, Keynote lecture: prediction of ship manoeuvrability: state of the art, Marine Simulation and Ship Manoeuvrability, ed. M. S. Chislett, pp. 371–87, Rotterda Balkema
Garrett, R., 1987, The Symmetry of Sailing: The Physics of Sailing for Yachtsmen, London: Adlard Coles
Gawn, R. W. L., 1953, Effect of pitch and blade width on propeller performance, Trans. RINA, 95, 157–93Google Scholar
Ge, C., 2002, Global hydroelastic response of catamarans due to wetdeck slamming, Dr.Ing thesis, Dept. of Marine Technology, NTNU, Trondheim
Ge, C., Faltinsen, O. M., Moan, T., 2005, Global hydroelastic response of catamarans due to wetdeck slamming, J. Ship Res., 49, 1, 24–42Google Scholar
Gerritsma, J., Beukelman, W., 1972, Analysis of the resistance increase in waves of a fast cargo ship, Intern. Shipbuilding Progr., 19, 217, 285–93CrossRefGoogle Scholar
Geurst, J. A., 1960, Linearized theory for fully cavitated hydrofoils, Intern. Shipbuilding Progr., 7, 65, 17–27CrossRefGoogle Scholar
Giesing, J. P., 1968, Nonlinear two-dimensional unsteady potential flow with lift, J. Aircraft, 5, 2, 135–43CrossRefGoogle Scholar
Goodman, R. A., 1971, Wave excited main hull vibration in large bulk carriers and tankers, Trans. RINA, 113, 167–84Google Scholar
Gradshteyn, I., Ryzhik, I., 1965, Tables of Integrals Series and Products, fourth ed., London and New York: Academic Press
Graff, W., Kracht, A., Weinblum, G. P., 1964, Some extensions of DW Taylor Standard Series, Trans SNAME, 72, 374–403
Greco, M., 2001, A two-dimensional study of green water loading. Dr.Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Greco, M., Landrini, M., Faltinsen, O. M., 2003, Local hydroelastic analysis on a VLFS with shallow draft, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 201–14, Oxford: Dept. of Eng. Science, University of Oxford
Green, A. E., 1936, Note on the gliding of a plate on the surface of a stream, Proc. Cambridge Phil.Soc., 32, 248–52CrossRefGoogle Scholar
Greenhow, M., 1986, High- and low-frequency asymptotic consequences of the Kramers-Kronig relations, J. Eng. Math., 20, 293–306CrossRefGoogle Scholar
Greenhow, M., Li, Y., 1987, Added masses for circular cylinders near or penetrating fluid boundaries – review, extension and application to water-entry, exit and slamming, Ocean Engng., 14, 4, 325–48CrossRefGoogle Scholar
Greenhow, M., Lin, W., 1983, Non-linear Free Surface Effects: Experiments and Theory, Report No. 83–19, Dept. Ocean Engn., Cambridge, Mass: Mass. Inst. Technol
Grigoropoulos, G. J., Loukakis, T. A., 2002, Resistance and seakeeping characteristics of a systematic series in the pre-planing condition (part I), Trans. SNAME, 110, 77–113Google Scholar
Grim, O., 1955, Die hydrodynamischen Kräfte beim Rollversuch, Schiffstechnik, 3, 14/15, 147–51Google Scholar
Haarhoff, S., Sharma, S. D., 2000, A note on the influence of speed and metacentric height on the yaw-rate stability of displacement ships, Intern. Workshop on Ship Maneuvering at the Hamburg Ship Model Basin, Hamburg, Germany, October 10–11
Hackmann, D., 1979, Written discussion to Jensen, J. J. and Pedersen, P. T. (1978)
Halstensen, S. O., Leivdal, P. A., 1990, The development of the SpeedZ Propulsion System, In Seventh International High Speed Surface Craft Conference, Kingston upon Thames: High Speed Surface Craft Ltd
Hama, F. R., Long, J. D., Hegart, J. C., 1956, On transition from laminar to turbulent flow, University of Maryland, Technical Note BN-81, AFOSR-TN-56-381
Hama, F. R., 1957, An efficient tripping device, J. Aeronautical Sciences, March
Hamamoto, M., Inoue, K., Kato, R., 1993, Turning motion and directional stability of surface piercing hydrofoil craft, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 807–18, Tokyo: The Society of Naval Architects of Japan
Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1994, Wave-induced springing and whipping of high-speed vessels, In Proc. Hydroelasticity in Marine Technology, ed. O. M. Faltinsen, C. M. Larsen, T. Moan, K. Holden, N. S. Spidsøe, pp. 191–204, Rotterdam and Brookfield: A. A. Balkema
Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1995, Long term springing and whipping stresses in high speed vessels, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 473–85, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
Haugen, E. M., 1999, Hydroelastic analysis of slamming on stiffened plates with application to catamaran wetdeck, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Haugen, E. M., Faltinsen, O. M., Aarsnes, J. V., 1997, Application of theoretical and experimental studies of wave impact to wetdeck slamming, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 423–30, South Yarra, Victoria, and London: Baird Publications
Havelock, T. H., 1908, The propagation of groups of waves in dispersive media with application to waves on water produced by a travelling disturbance, Proc. Royal Soc., London, Series A, LXXXI, 398–430CrossRefGoogle Scholar
Havelock, T. H., 1963, Collected Papers, ed. C. Wigley, Washington, D. C.: Office of Naval Research
Hayman, B., Haug, B., Valsgård, S., 1991, Response of fast craft hull structures to slamming loads, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 381–398, Trondheim: Tapir Publishers
Henry, C. J., Dugundji, J., Ashley, H., 1959, Aeroelastic stability of lifting surfaces in high-density fluids, J. Ship Res., 2, 4, 10–21Google Scholar
Hermundstad, O. A., 1995, Theoretical and experimental hydroelastic analysis of high speed vessels, Dr.ing thesis, Dept. of Marine Structures, NTNU, Trondheim
Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1995, Hydroelastic analysis of a flexible catamaran and comparison with experiments, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 487–500, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1997, Hydroelastic analysis of high speed catamaran in regular and irregular waves, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 447–54, South Yarra, Victoria, and London: Baird Publications
Hinze, J. O., 1987, Turbulence, second edition, New York: McGraw-Hill Book Company
Hoerner, S. F., 1965, Fluid Dynamic Drag, Published by the author
Holling, H. D., Hubble, E. N., 1974, Model resistance data of Series 65 Hullforms applicable to hydrofoils and planing craft, National Ship Research and Development Centee Report No. 4121, Bethesda, Md
Hooft, J. P., Nienhuis, U., 1994, The prediction of the ship's maneuverability in the design stage, SNAME Transactions, 102, 419–45Google Scholar
Hough, G. R., Moran, J. P., 1969, Froude number effects on two-dimensional hydrofoils, J. Ship Res., 13, 1, 53–60Google Scholar
Howison, S. D., Ockendon, J. R., Wilson, S. K., 1991, Incompressible water-entry problems at small deadrise angles, J. Fluid Mech., 222, 215–30CrossRefGoogle Scholar
Hughes, G., 1954, Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. Transactions of the Institution of Naval Architects, 96, 314–76Google Scholar
Huse, E., 1972, Pressure fluctuations on the hull induced by cavitating propellers, Norwegian Ship Model Experiment Tank Publications, No. 111, March, Trondheim
Ikeda, Y. Katayama, T., 2000a, Stability of high speed craft, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 401–9, Oxford: Elsevier Science Ltd
Ikeda, Y., Katayama, T., 2000b, Porpoising oscillations of very-high-speed marine craft, Phil. Trans. R. Soc. Lond. A, 358, 1905–15CrossRef
Ikeda, Y., Katayama, T., Okumura, H., 2000a, Characteristics of hydrodynamics derivatives in maneuverability equations for super-high-speed planing hulls, In Proc. Tenth Int. Offshore and Polar Engineering Conf., Vol. 4, pp. 434–44
Ikeda, Y., Okumura, H., Katayama, T., 2000b, Stability of a planing craft in turning motion, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 449–95, Oxford: Elsevier Science Ltd
Ikeda, Y., Yokomizo, K., Hamasaki, J., Umeda, N., Katayama, T., 1993, Simulation of running attitude and resistance of a high-speed craft using a database of hydrodynamic forces obtained by fully captive model experiments, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 583–94, Tokyo: The Society of Naval Architects of Japan
Inukai, Y., Horiuchi, K., Kinoshita, T., Kanou, H., Itakura, H., 2001, Development of a single-handed hydrofoil sailing catamaran, J. Mar. Sci. Technol. 6, 1, 31–41CrossRef
Ishiguro, T., Uchida, K., Manabe, T., Michida, R., 1993, A study on the maneuverability of the Super Slender Twin Hull, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 283–94, Tokyo: The Society of Naval Architects of Japan
Iwashita, H., Nechita, M., Colagrossi, A., Landrini, M, Bertram, V., 2000, A critical assessment of potential flow models for ship seakeeping, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 37–46. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
Jensen, J. J., 1996, Wave-induced hydroelastic response of fast monohull ships, CETENA Seminar on Hydroelasticity for Ship Structural Design, Genova: CETENA
Jensen, J. J., Dogliani, M., 1996, Wave-induced ship hull vibrations in stochastic seaways, Marine Structures, 9, 3/4, 353–87CrossRefGoogle Scholar
Jensen, J. J., Pedersen, P. T., 1978, Wave-induced bending moments in ships – a quadratic theory, Trans. RINA, 121, 151–65Google Scholar
Jensen, J. J., Pedersen, P. T., 1981, Bending moments and shear forces in ships sailing in irregular wave, J. Ship Res., 24, 4, 243–51
Jensen, J. J., Wang, Z., 1998, Wave induced hydroelastic response of a fast monohull displacement ship, In Proc. Second Int. Conf. on Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koterayama, M. Okkusu, pp. 411–27, Fukuoka, Japan: RIAM, Kyushu University
Johnston, R. J., 1985, Hydrofoils, Naval Engineers Journal, 97, 2, 142–99CrossRefGoogle Scholar
Kaiho, T., 1977, A new method for solving surface-piercing strut problems, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Kan, M., Hanaoka, T., 1964, Analysis for the effect of shallow water upon turning (in Japanese), J. Soc. Nav. Arch. Japan, 115, 49–55
Kaplan, P., Bentson, J., Davis, S., 1981, Dynamics and hydrodynamics of surface-effect ships, Trans. SNAME, 89, 211–47Google Scholar
Kapsenberg, G. K., Brizzolara, S., 1999, Hydroelastic effects of bow flare slamming on a fast monohull, In Proc. FAST'99, pp. 699–708, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Karman, T., 1929, The impact on seaplane floats during landing, NACA, Tech. Note No. 321, Washington, D.C
Karman, T., 1930, Mechanische Ähnlichkeit und Turbulenz, Nachr. Ges. Wiss. Goett, Math-Phys. Kl., 58–76
Kashiwagi, M., 1993, Heave and pitch motions of a catamaran advancing in waves, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 643–55, Tokyo: The Society of Naval Architects of Japan
Katayama, T., 2002, Experimental techniques to assess dynamic unstability of high-speed planing craft, non-zero heel, bow-diving, porpoising and transverse porpoising, In Proc. Sixth Int. Ship Stability Workshop, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Katayama, T., Hinami, T., Ikeda, Y., 2000, Longitudinal motion of a super high-speed planing craft in regular head waves, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 214–20. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
Kato, H., 1996, Cavitation, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 5, pp. 233–77, Southampton: Computational Mechanics Publications
Kerczek, C., Tuck, E. O., 1969, The representation of ship hulls by conformal mapping functions, J. Ship Res., 13, 4, 284–98Google Scholar
Kerwin, J. E., 1991, Hydrofoils and propellers. Lecture notes, Dept. of Ocean Engineering, MIT, Cambridge, Massachusetts
Kerwin, J. E., Lee, C-S., 1978, Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory, Trans. SNAME, 86, 218–53Google Scholar
Keuning, J. A., Gerritsma, J., 1982, Resistance tests of a series planing hull forms with 25 degrees deadrise angle, Intern. Shipbuilding Progr., 29, 337, 222–49CrossRefGoogle Scholar
Keuning, J. A., Gerritsma, J., Terwisga, P. F. van, 1993, Resistance tests of a series planing hull forms with 30 degrees deadrise angle and a calculation method based on this and similar systematic series, Intern. Shipbuilding Progr., 40, 424, 333–82Google Scholar
Kijima, K., Furukawa, Y., 2000, Ship maneuvering performance in waves, in Contemporary Ideas on Ship Stability, ed. D. Vassalos, N. Hamamoto, A. Papanikolaous, D. Molyneux, pp. 435–48, Amsterdam: Elsevier Science Ltd
Kinnas, S. A., 1996, Theory and numerical methods for the hydrodynamic analysis of marine propulsors, In Advances in Marine Hydrodynamics, ed. M. Okkusu, Ch. 6, pp. 279–323, Southampton: Computional Mechanics Publications
Kinsman, B., 1965, Wind Waves, Englewood Cliffs, N. J.: Prentice-Hall Inc
Klotter, K., 1978, Technische Schwingungslehre. Erster Band: Einfache Schwinger. Teil A: Lineare Schwingungen, Berlin, Heidelberg and New York: Springer-Verlag
Kochin, N. E., Kibel, I. A., Roze, N. V., 1964, Theoretical Hydromechanics, New York: Interscience Publishers
Koehler, B. R., Kettleborough, 1977, Hydrodynamics of a falling body upon a viscous incompressible fluid, J. Ship Res., 20, 190–8Google Scholar
Kotik, J., Mangulis, V., 1962, On the Kramers-Kronig relations for ship motions, Intern. Shipbuilding Progr., 9, 97, 183–94CrossRefGoogle Scholar
Koumoutsakas, P., Leonard, A., 1995, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1–38CrossRefGoogle Scholar
Koushan, K., 1997, Beitrag Zum Kanaleinfluss bei Tragflügelversuchen, Dr.ing thesis, Technische Universität Berlin
Krasny, R., 1987, Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184, 123–55CrossRefGoogle Scholar
Kruppa, C., 1990, Propulsion systems for high-speed marine vehicles, Second Conference on High-Speed Marine Craft, Oslo: Norwegian Society of Chartered Engineers
Kruppa, C., 1991, On the design of surface piercing propellers, Seventh GE-US Symposium Hydroacoustics, Part II, Hamburg, Germany
Kruppa, C. F. L., 1992, Testing surface piercing propellers, In Hydrodynamics: Computation, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 107–14, Amsterda Elsevier Science Publishers B.V
Kuchemann, D., 1978, The Aerodynamic Design of Aircraft, Oxford: Pergamon Press
Kutta, W. M., 1910, Über eine mit den Grundlagen des Flugsproblems in Beziehung stehende zweidimensionale Strömung. Sitzungsberichte der Königlischen Bayerschen Akademie der Wissenschaften. (This paper reproduced Kutta's unpublished thesis of 1902)
Kvålsvold, J., 1994, Hydroelastic modelling of wetdeck slamming on multihull vessels, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Kvålsvold, J., Faltinsen, O. M, 1995, Hydroelastic modelling of wetdeck slamming on multihull vessels, J. Ship Res., 39, 225–29Google Scholar
Kvålsvold, J., Faltinsen, O. M., Aarsnes, J. V., 1995, Effect of structural elasticity on slamming against wetdecks of multihull vessels, In Proc. PRADS'95, ed. H. Kim, J. W. Lee, 1, 1684–99, Seoul: The Society of Naval Architects of Korea
Lai, C., 1994, Three-dimensional planing hydrodynamics based on a vortex lattice method, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Landau, L. D., Lifshitz, E. M., 1959, Fluid Mechanics, Oxford: Pergamon Press
Larsson, L., Baba, E., 1996, Ship resistance and flow computations, Advances in Marine Hydrodynamics, ed. M. Ohkusu, pp. 1–75, Southampton: Computational Mechanics Publication
Larsson, L., Eliasson, R., 2000, Principles of Yacht Design, Camden, Maine: International Marine
Latorre, R., Miller, A., Philips, R., 2003, Drag reduction on a high speed trimaran, In Proc. FAST'03, ed. P. Casella, Vol. 1, Session A1, pp. 87–92, Naples: Dipartimento Ingegneria Navale–Università di Napoli “Federico II.”
Lavis, D. R., 1980, The development of stability standards for dynamically supported craft, a progress report, In Proc. of the High Speed Surface Craft Exhibition and Conference, pp. 384–94, Brighton, Sussex, UK: Kalerghi Publications
Lee, C. S., 1977, A numerical method for the solution of the unsteady lifting problem of rectangular and elliptic hydrofoil, master's thesis, Dept. of Ocean Engineering, MIT, Cambridge, Mass
Lee, W. T., Bales, S. L., 1984, Environmental data for design of marine vehicles, In Ship Structure Symposium '84, pp. 197–209, New York: The Society of Naval Architects and Marine Engineers
Lefandeux, F., 1999, New advances in sailing hydrofoils, In RTO Meeting Proc. 15. Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 15-1–15-14, Neuilly-Sur-Seine Cedex, France: Research and Technology Organization/NATO
Leonard, J. W., 1988, Tension Structures, Behaviour and Analysis, New York: McGraw-Hill Book Company
Lewandowski, E. M., 1997, Transverse dynamic stability of planing craft, Marine Technology, 34, 2, 109–18Google Scholar
Lewis, R. I., 1996, Turbomachinery Performance Analysis, London: Arnold
Lighthill, M. J., 1951, A new approach to thin airfoil theory, The Aeronautical Quarterly, III, 193–210CrossRefGoogle Scholar
Lighthill, M. J., 1960, Note on the swimming of slender ship, J.Fluid Mech., 9, 304–17CrossRefGoogle Scholar
Lin, W-M., Meinhold, M. J., Salvesen, N., 1995, SIMPLAN2, simulation of planing craft motions and load, Report SAIC-95/1000, SAIC, Annapolis, Md
Lord Kelvin (Sir William Thompson), 1887, On ship waves, Proc. Inst. Mech. Eng., London, UK
Lugni, C., Colagrossi, A., Landrini, M., Faltinsen, O. M., 2004, Experimental and numerical study of semi-displacement monohull and catamaran in calm water and incident waves, In Proc. 25th Symposium on Naval Hydrodynamics, Washington D. C.: Dept. of the Navy–Office of Naval Research
Lugt, H. J., 1981, Numerical modelling of vortex flows in ship hydrodynamics, a review, In Proc. Third Int. Conf. on Numerical Ship Hydrodynamics, ed. J-C. Dern, H. J. Hausling, pp. 297–316, Paris: Bassin d'Essais des Carènes
Lunde, J. K., 1951, On the linearized theory of wave resistance for displacement ships in steady and accelerated motions, Trans. SNAME, 59, 25–85Google Scholar
Maeda, H., 1991, Modelling techniques for dynamics of ships, Phil. Trans. R. Soc. Lond. A, 334, 307–17CrossRefGoogle Scholar
Malakhoff, A., Davis, S., 1981, Dynamics of SES bow seal fingers, AIAA Sixth Marine Systems Conf., AIAA – 81-2087
Manen, J. D., Oossanen, P. van, 1988, Resistance, propulsion and vibration, In Principles of Naval Architecture, ed. E. V. Lewis, Vol. II, Chapter VI, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Marchaj, C. A., 2000, Aero-hydrodynamics of Sailing, St. Michaels, Md: Tiller
Maruo, H., 1963, Resistance in waves, 60th Anniversary Series SNA Japan, 8, 67–102Google Scholar
Masilge, C., 1991, Konzeptien und Analyse eines interierten Strahlantriebes mit einem rotationssymmetrischen Grenzchichteinlauf, Dissertation, Technische Universität Berlin
Maskell, E. C., 1972, On the Kutta-Joukowski condition in two-dimensional unsteady flow, Roy. Aircraft Establishment, Fanborough, Techn. Memo Aero 1451
Matthews, S. T., 1967, Main hull girder loads on a Great Lakes bulk carrier, In Proc. SNAME Spring Meeting, pp. 11.1–11.32, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Meek-Hansen, B., 1990, Damage investigation on diesel engines in high speed vehicles, In Proc. Fifth International Congress on Marine Technology Athens '90, pp. 309–403, Athens: Hellenic Institute of Marine Technology
Meek-Hansen, B., 1991, Engine running conditions during high speed marine craft operations, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 861–76, Trondheim: Tapir Publishers
Mei, C. C., 1983, The Applied Dynamics of Ocean Surface Waves, New York: John Wiley & Sons. Revised printing (1989), Singapore: World Scientific
Meyer, J. R., Wilkins, J. R. Jr., 1992, Hydrofoil development and applications, In Proc. HPMV'92, pp. HF1–HF24, Alexandria, Va.: American Society of Naval Engineers
Michell, J. M., 1898, The wave resistance of a ship, Phil. Mag., London, Series 5, 45, 106–23CrossRefGoogle Scholar
Milburn, D., 1990, Numerical model of 47'MLB high speed turns, USCG R&D Center Report
Milne-Thomson, L. M., 1996, Theoretical Hydrodynamics, Mineola, N. Y.: Dover Publications, Inc
Minsaas, K. J., 1993, Design and development of hydrofoil catamarans in Norway, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 83–99, Tokyo: The Society of Naval Architects of Japan
Minsaas, K. J., 1996, Flow studies with a pitot inlet in a cavitation tunnel, 20th ITTC Workshop on Waterjets, Supplement to the Report of the Waterjet Group, 21st ITTC, Trondheim, Norway
Minsaas, K. J., Thon, H. J., Kauczynski, W., 1986, Influence of ocean environment on thrusters performance. In Proc. Int. Symp. Propeller and Cavitation, supplementary volume, pp. 142–42. Shanghai: The Editorial Office of Shipbuilding of China
Molin, B., 1999, On the piston mode in moonpools, In Proc. 14th Int. Workshop on Water Waves and Floating Bodies, ed. R. F. Beck, W. W. Schultz, pp. 103–6, Ann Arbor, Mich.: Dept. of Nav. Arch. and Mar. Eng., The University of Michigan
Molland, A. F., Wellicome, J. F., Couser, P. R., 1996, Resistance experiments on a systematic series of high speed displacement catamaran hull forms: Variation of length-displacement ratio and breadth-draught ratio, Trans. RINA, 138 pt A, 55–72Google Scholar
Mørch, J. B., 1992, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, Dr.ing. thesis, Div. of Marine Hydrodynamics, NTNU, Trondheim
Mørch, H. J. B., Minsaas, K. J., 1991, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 143–61, Trondheim: Tapir Publishers
Morison, J. R., O'Brien, M. P., Johnson, J. W., Schaaf, S. A., 1950, The force exerted by surface waves on piles, Pet. Trans., 189, 149–54Google Scholar
Moulijn, J. 2000, Added resistance due to waves of surface effect ships, Ph. D. thesis, Technical University of Delft, The Netherlands
Müller-Graf, B., 1991, The effect of an advanced spray rail system on resistance and development of spray of semi-displacement round bilge hulls, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 125–41, Trondheim: Tapir Publishers
Müller-Graf, B., 1994, Spritzleisten und Staukeile-Massnahmen zur Verbesserung der hydrodynamischen Eigenschaften von Motorbooten (Spray rails and wedges – an effective tool to improve the hydrodynamic characteristics of motorboats). In Proc. of the 15th Symp. on Yacht Design and Yacht Building, 28– 29 Oct. 1994, pp. 11–65, Hamburg, Germany: Hamburger Messe und Congress GmbH und Deutcher Boots und Schiffbauer Verband
Müller-Graf, B., 1997, Dynamic stability of high speed small craft, WEGEMT Association Twenty-Fifth School Craft Technology, Athens, Greece: Dept. of Nav. Arch. and Mar. Eng., National Technical University of Athens
Müller-Graf, B, 1999a, Widerstand und hydrodynamische Eigenschaften der schnellen Knickspant-Katamarane der VWS-Serie'89 (Resistance and hydrodynamic characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 47–165, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
Müller-Graf, B, 1999b, Leistingsbedarf und Propulsionseigenschaften der schnellen Knickspantkatamarane der VWS-Serie'89 (Power requirements and propulsive characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 167–257, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
Müller-Graf, B., Schmiechen, M., 1982, On the stability of semidisplacement craft, In Proc. of Second Intern. Conf. on Stability of Ships and Ocean Vehicles, pp. 67–76, Tokyo: The Society of Naval Architects of Japan
Myrhaug, D., 2004, Lecture notes in oceanography: winds, waves, Trondhei Dept. of Marine Technology, NTNU
Nakatake, K. Ando, J., Kataoka, K., Yoshitake, A., 2003, A simple surface panel method “SQCM” in ship hydrodynamics, In Proc. Int. Symp. on Naval Architecture and Ocean Engineering, pp. 23/1–11, Shanghai: School of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, China
Nakos, D., 1990, Ship wave patterns and motions by a three-dimensional Rankine panel method, Ph.D. thesis, Dept. of Ocean Engineering, MIT, Cambridge
Newman, J. N., 1962, The exciting forces on fixed bodies in waves, J. Ship Res., 6, 4, 10–7Google Scholar
Newman, J. N., 1969, Lateral motion of a slender body between two parallel walls, J. Fluid Mech., 39, 1, 97–115CrossRefGoogle Scholar
Newman, J. N., 1977, Marine Hydrodynamics, Cambridge: The MIT Press
Newman, J. N., 1978, The theory of ship motions, Advances in Applied Mechanics, 18, 221–82CrossRefGoogle Scholar
Newman, J. N., 1987, Evaluation of the wave-resistance Green function: part 1 – the double integral, J. Ship Res., 31, 2, 79–90Google Scholar
Newman, J. N., Sclavounos, P., 1980, The unified theory of ship motions, In Proc. 13th Symp.on Naval Hydrodynamics, ed. T. Inui, pp. 373–97, Tokyo: The Shipbuilding Research Association of Japan
Newton, R. N., Rader, H. A., 1961, Performance data of propellers for high speed craft, Trans. RINA, 103, 2, 93–129Google Scholar
Nicholson, K., 1974, Some parametric model experiments to investigate broaching-to, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 160–6, London: Mechanical Engineering Publications Ltd
Nikuradse, J., 1930, Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren, Ing. – Arch., 1, 306–32CrossRefGoogle Scholar
Nikuradse, J., 1933, Strömungsgesetze in rauhen Rohren, Forschungsheft, 361, Berlin: VDI-Verlag
Nonaka, K., 1993, Estimation of hydrodynamic forces acting on a ship in maneuvering motion, In Proc. MARSIM'93, pp. 437–45, St. John's, Newfoundland
Nordenstrøm, N., 1973, A method to predict long-term distributions of waves and wave-induced motions and loads on ships and other floating structures, Det Norske Veritas Publications No 81, Det Norske Veritas, Høvik, Norway
Nordenstrøm, N., Faltinsen, O. M., Pedersen, B., 1971, Prediction of wave-induced motions and loads for catamarans, In Proc. Offshore Technology Conference, Paper No. OTC1418, Vol. 2, pp. 13–58, Richardson, Tex.: Offshore Technology Conference Inc
NORDFORSK, 1987, The Nordic Cooperative Project, Seakeeping performance of ships, In Assessment of a Ship Performance in a Seaway, Trondheim, Norway: MARINTEK
Norrbin, N. H., 1971, Theory and observation on the use of a mathematical model for ship maneuvering in deep and confined waters, SSPA Report No. 68, Gothenborg
NS-ISO 2631-31. utgave November 1985 (Figure 1 side 6)
Nwogu, O., 1993, An alternative form of Boussinesq equations for nearshore wave propagation, J. of Waterway, Port, Coastal and Ocean Engineering, 119, 6, 618–38CrossRefGoogle Scholar
Ochi, M. K., 1964, Prediction of occurrence and severity of ship slamming at sea, In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 545–96. Washington, D. C.: Office of Naval Research–Department of the Navy
Ochi, M. K., 1982, Stochastic analysis and probability distribution in random seas, Advances in Hydroscience, 13, 217–375CrossRefGoogle Scholar
Ogilvie, T. F., 1964, Recent progress towards the understanding and prediction of ship motions. In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 3–128. Washington, D. C.: Office of Naval Research–Department of the Navy
Ogilvie, T. F., 1969a, Lecture notes for the course Naval Hydrodynamics I, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Ogilvie, T. F., 1969b, Oscillating pressure fields on a free surface, Rep. no 030, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Ogilvie, T. F., 1972, The wave generated by a fine ship bow, In Ninth Symp. Naval Hydrodynamics, ed. R. Brard and A. Castaro, Vol. 2, pp. 1483–525, Washington, D. C.: National Academy Press
Ogilvie, T. F., 1978, End effects in slender-ship theory, In Proc. Symp. on Applied Mathematics, dedicated to the late Prof. Dr. R. Timman, ed. A. J. Hermans, M. W. C. Oosterveld, pp. 119–39, Delft: Delft University Press
Ohkusu, M., 1969, On the heaving motion of two circular cylinders on the surface of a fluid, Reports of Research Institute for Applied Mechanics, Vol. XVII, No. 58, Kyushu University, Japan
Ohkusu, M., 1996, Hydrodynamics of ships in waves, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Chapter 2, pp. 77–132, Southampton: Computational Mechanics Publications
Ohkusu, M., Faltinsen, O. M., 1990, Prediction of radiation forces on a catamaran at high Froude number, In Proc. 18th Symp. on Naval Hydrodynamics, pp. 5–19, Washington, D. C.: National Academy Press
Økland, O., 2002, Numerical and experimental investigation of whipping in twinhull vessels exposed to severe wet deck slamming, Dr.ing. thesis, Dept. of Marine Technology, NTNU, Trondheim
Papanikolaou, A., 2002, Developments and potential of Advanced Marine Vehicles Concepts, Bulletin of the KANSAI Society of Naval Architects, 55, 50–4Google Scholar
Prandtl, L., 1933, Neuere Ergebnisse der Turbulenzforschung, Z. Ver. Dtch. Ing., 77, 5, 105–14, (Translated as NACA Tech. Mem. 720)Google Scholar
Prandtl, L., 1956, Strömungslehre, Braunschweig: Friedr. Vieweg & Sohn
Riabouchinski, D., 1920, Sur la resistance des fluids, Congres Intern. des Math, Strasbourg, pp. 568–85, Toulouse; Henri Villat, Librairie de l'Université
Rognebakke, O. F., Faltinsen, O. M., 2003, Coupling of sloshing and ship motions, J. Ship Res., 47, 3, 208–21
Ronæss, M., 2002, Wave induced motions of two ships advancing on a parallel course, Dr. Ing. Thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Rose, J. C., Kruppa, C., 1991, Surface piercing propellers – methodical series model test results, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1129–47, Trondheim: Tapir Publishers
Rose, J. C., Kruppa, C., Koushan, K., 1993, Surface piercing propellers – propeller/hull interaction, In Proc. FAST'93, ed. K. Sugai, M. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 867–81, Tokyo: The Society of Naval Architects of Japan
Rouse, H., 1961, Fluid Mechanics for Hydraulic Engineers, New York: Dover Publications, Inc
Saito, Y., Oka, M., Ikebuchi, K., Asao, M., 1991, Rough water capabilities of fully submerged hydrofoil craft “Jetfoil,” In Proc. FAST‘91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1013–28, Trondheim: Tapir Publishers
Salvesen, N., 1974, Second-order steady-state forces and moments on surface ships in oblique waves, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 212–26, London: Mechanical Engineering Publications
Salvesen, N., Tuck, E. O., Faltinsen, O. M., 1970, Ship motions and sea loads, Trans. SNAME, 78, 250–87Google Scholar
Sarpkaya, T., 1966, Separated flow about lifting bodies and impulsive flow about cylinders, AIAA Journal, 44, 414–20CrossRefGoogle Scholar
Sarpkaya, T., Shoaff, R. L., 1979, A discrete-vortex analysis of flow about stationary and transversely oscillating circular cylinders, Tech. Rep. NPS-69 SL 79011, Nav. Postgrad. Sch. Monterey, Calif
Sarpkaya, T., Isaacson, M., 1981, Mechanics of Wave Forces on Offshore Structures, New York: Van Nostrand Reinhold Company
Savitsky, D., 1964, Hydrodynamic design of planing hulls, Marine Technology, 1, 1, 71–96Google Scholar
Savitsky, D., 1988, Wake shapes behind planing hull forms, In Proc. Int. High-Performance Vehicle Conf., pp. VII, 1–15, Shanghai: The Chinese Society of Naval Architecture and Marine Engineering
Savitsky, D., 1992, Overview of planing hull developments, In Proc. HPMV'92, pp. PC1–PC14, Alexandria, Va.: American Society of Naval Engineers
Schlichting, H., 1979, Boundary-Layer Theory, New York: McGraw-Hill Book Company
Schmitke, R. T., Jones, E. A., 1972, Hydrodynamics and simulation in the Canadian hydrofoil program, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, Vol. 1, pp. 293–342, Arlington, Va.: Office of Naval Research–Department of the Navy
Schultz-Grunow, F, 1940, Neues Reibungswiderstandsgesetz für glatte Platten, Luftfahrtforschung, 17, 239–46 (Translated as NACA Tech. Mem. 986)Google Scholar
Schwartz, L. W., 1974, Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid Mech., 62, 553–78CrossRefGoogle Scholar
Sclavounos, P. D., 1987, An unsteady lifting line theory, J. Eng. Math., 21, 201–26CrossRefGoogle Scholar
Sclavounos, P., 1996, Computation of wave ship interactions, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 4, pp. 177–231, Southampton: Computational Mechanics Publications
Sclavounos, P. D., Borgen, H., 2004, Seakeeping analysis of a high-speed monohull with a motion control bow hydrofoil, J. Ship. Res., 28, 2, 77–117Google Scholar
Scolan, Y.-M., Korobkin, A. A., 2001, Three-dimensional theory of water impact, part 1, inverse Wagner problem, J. Fluid Mech., 440, 293–326CrossRefGoogle Scholar
Scolan, Y.-M., Korobkin, A. A., 2003, On energy arguments applied to slamming of elastic body, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 175–83, Oxford: Dept. of Eng. Science, University of Oxford
Sedov, I., 1940, On the theory of unsteady planing and the motion of a wing with vortex separation, NACA Technical Memorandum 942, 53 pp., Washington, D.C
Sedov, I., 1965, Two-Dimensional Problems in Hydrodynamics and Aerodynamics, New York: Interscience Publishers
Sfakiotakis, M., Lane, D. M., Davies, J. B. C., 1999, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24, 2, 237–52CrossRefGoogle Scholar
Shen, Y. T., Ogilvie, T. F., 1972, Nonlinear hydrodynamic theory for finite-span planing surface, J. Ship Res., 16, 3–20Google Scholar
Shen, Y. T., Eppler, R., 1979, Section design for hydrofoil wings with flaps, J. Hydrodynamics, 13, 2, 39–45Google Scholar
Shen, Y. T., 1985, Wing sections for hydrofoils, part 3: experimental verifications, J. Ship Res., 29, 1, 39–50Google Scholar
Skjørdal, S., Faltinsen, O. M., 1980, A linear theory of springing, J. Ship. Res., 24, 2, 74–84Google Scholar
Skomedal, N., 1985, Application of a vortex tracking method to three-dimensional flow past lifting surfaces and blunt bodies, Dr.ing thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Skorupka, S., Le Coz, D., Perdon, P., 1992, Performance assessment of the surface effect ship AGNES 200, DCN Bassin d'Essais des Carénes Translation, Paris, France
Søding, H., 1982, Prediction of ship steering capabilities, Schiffstechnik, 29, 3–29Google Scholar
Søding, H., 1984, Influence of course control on propulsion power, Schiff & Hafen/Kommandobrücke, 3, 63–8Google Scholar
Søding, H., 1997, Drastic resistance reductions in catamarans by staggered hulls, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 225–30, South Yarra, Victoria, and London: Baird Publications
Sørensen, A., 1993, Modelling and control of SES dynamics in the vertical plane, Dr.ing. thesis, ITK-report 1993:7-W, Nor. Inst. Technol., Trondheim
Sorensen, R. M., 1993, Basic Wave Mechanics: For Coastal and Ocean Engineers, New York: John Wiley & Sons Inc
Steen, S., 1993, Cobblestone effect on SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Stoker, J. J., 1958, Water Waves. The Mathematical Theory with Applications, New York: John Wiley & Sons Inc
Storhaug, G., 1996, SWATH project: seakeeping and wave load analysis of a SWATH, revision 2, Det Norske Veritas report 96-0174, Det Norske Veritas, Høvik, Norway
Storhaug, G., Vidic-Perunovic, J., Rüdinger, F., Holtsmark, G., Helmers, J. R., Gu, X., 2003, Springing/whipping response of a large ocean going vessel – a comparison between numerical simulations and full scale measurements, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 117–29, Oxford: Dept. of Eng. Science, University of Oxford
Stratford, B. S., 1959, An experimental flow with zero pressure friction throughout its region of pressure rise, J. Fluid Mech., 5, 1, 17–35CrossRefGoogle Scholar
Svenneby, E. J., Minsaas, K. J., 1992, Foilcat 2900, Design and performance, In Proc. Third Conf. on High-Speed Marine Craft, paper no 6, Oslo: Norwegian Society of Chartered Engineers
Takaishi, Y., Matsumoto, T., Ohmatsu, S., 1980, Winds and Waves of the North Pacific Ocean 1964–1973. Statistical Diagrams and Tables, Tokyo: Ship Research Institute
Takaki, M., Iwashita, H., 1994, On the estimation methods of the seakeeping qualities for the high speed vessel in waves, applications of ship motion theory to design, 11th Marine Dynamics Symposium, Tokyo: Soc. Naval Arch. of Japan
Takemoto, H., 1984, Some considerations on water impact pressure, J. Soc. Naval Arch. Japan, 156, 314–22CrossRefGoogle Scholar
Tanaka, N., Ikeda, Y., Nishino, K., 1982, Hydrodynamic viscous force acting on oscillating cylinders with various shapes. In Proc. Sixth Symp. of Marine Technology, The Society of Naval Architects of Japan. (Also Rep. Dep. Nav. Arch., University of Osaka Prefecture, no. 407, Jan. 1983)
Tatinclaux, J. C., 1975, On the wave resistance of surface effect ships, Trans. SNAME, 83, 51–66Google Scholar
Taylor, T. E., Kerwin, J. E., Scherer, J. O., 1998, Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure, Int. Conf. on Waterjet Propulsion, Latest Development, London: The Royal Institution of Naval Architects
Terwisga, T., 1991, The effect of waterjet-hull interaction on thrust and propulsive efficiency. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1149–67, Trondheim: Tapir Publishers
Terwisga, T., 1992, On the prediction of the powering characteristics of hull-waterjet systems, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 115–20, Amsterda Elsevier Science Publishers B.V
Theodorsen, T., 1935, General theory of aerodynamic instability and mechanism of flutter, NACA Report 496
Todd, F. H., 1967, Resistance and propulsion. In Principles of Naval Architecture, ed. J. P. Comstock, pp. 228–462. New York: Society of Naval Architects and Marine Engineers
Torsethaugen, K., 1996, Model for a doubly peaked wave spectrum, Rep. no. STF22 A96204, SINTEF Civil and Environmental Engineering, Trondheim, Norway
Tregde, V., 2004, Aspects of ship design; optimization of aft hull with inverse geometry design, Ph.D thesis, Dept. of Marine Technology, NTNU, Trondheim
Triantafyllou, M. S., Triantafyllou, G. S., 1995, An efficient swimming machine, Scientific American, March, 40–8
Troesch, A. W., 1984, Effects of nonlinearities on hull springing, Marine Technology, 21, 4, 356–63Google Scholar
Troesch, A. W., 1992, On the hydrodynamics of vertically oscillating planing hulls, J. Ship Res., 36, 4, 317–31Google Scholar
Troesch, A. W., Falzarano, J. M., 1993, Modern nonlinear dynamical analysis of vertical plane motion of planing hulls, J. Ship Res., 37, 3, 189–99Google Scholar
Tuck, E. O., 1966, Shallow water flow past slender bodies, J. Fluid Mech., 26, 89–95CrossRefGoogle Scholar
Tuck, E. O., 1988, A strip theory for wave resistance, In Proc. Third Int. Workshop on Water Waves and Floating Bodies, ed. F. T. Korsmeyer, pp. 169–74, Cambridge, Mass.: Dept. of Ocean Engineering, MIT
Tuck, E. O., Lazauskas, L., 1998, Optimum spacing of a family of multihulls, Ship Technology Research, 45, 180–95Google Scholar
Tuck, E. O., Lazauskas, L., 2001, Free-surface pressure distributions with minimum wave resistance, ANZIAM Journal, 43, E75–E101CrossRefGoogle Scholar
Tuck, E. O., Newman, J. N., 1974, Hydrodynamic interactions between ships, In Tenth Symp. on Naval Hydrodynamics, ed. R. D. Cooper, S. W. Doroff, pp. 35–70, Arlington, Va.: Office of Naval Research–Department of the Navy
Tucker, M. J., Challenor, P. G., Carter, D. J. T., 1984, Numerical simulation of a random sea, a common error and its effect upon wave group statistics, Applied Ocean Research, 6, 2, 118–22CrossRefGoogle Scholar
Tucker, M. J., Pitt, E. G., 2001, Waves in Ocean Engineering, Elsevier Ocean Engineering Book Series, Vol. 5, ed. R. Bhattacharya, M. E. McCormick, Amsterdam: Elsevier
Tulin, M. P., 1953, Steady two-dimensional cavity flows about slender bodies, David Taylor Model Basin, Rep. 834, Washington D.C
Tulin, M., Landrini, M., 2000, Breaking waves in the ocean and around ships, In Proc. 23rd Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
Ulstein, T., 1995, Nonlinear effects of a flexible stern seal bag by cobblestone oscillations of an SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Ulstein, T., Faltinsen, O. M., 1996, Hydroelastic analysis of a flexible bag-structure, In Proc. 20th Symp. on Naval Hydrodynamics, pp. 702–21, Washington, D. C.: National Academy Press
Ulstein, T., Faltinsen, O. M., 1996, Two-dimensional unsteady planing, J. Ship Res., 40, 3, 200–10Google Scholar
Vanden-Broeck, J.-M., 1980, Nonlinear stern waves, J. Fluid Mech., 96, 3, 603–11CrossRefGoogle Scholar
Vassalos, D., Hamamoto, M., Papanikolaou, D, Molyneux, D., 2000, Contemporary Ideas on Ship Stability, Oxford: Elsevier Science Ltd
Venning, E., Haberman, W. L., 1962, Supercavitating propeller performance, Trans. SNAME70, 354–417
Vugts, J. H., 1968, Cylinder motions in beam waves, Nederlands Ship Research Centre, TNO, Delft
Wadlin, K. L., 1958, Mechanics of ventilation inception, In Proc. Second Symp. on Naval Hydrodynamics, pp. 425–46, ed. P. Eisenberg, Washington, D. C.: Office of Naval Research–Department of the Navy
Wagner, H., 1925, Über die Enstehung des Auftriebes von Tragflügeln, Z. Angew. Mech. 5, 1, 17–35CrossRef
Wagner, H., 1932, Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten, Zeitschr. f. Angew. Math und Mech, 12, 4, 193–235CrossRefGoogle Scholar
Wahab, R., Swaan, W. A., 1964, Course keeping and broaching in following waves, J. Ship Res., 7, 4, 1–15Google Scholar
Walderhaug, H., 1972, Ship Hydrodynamics, Basic Course (in Norwegian), Trondheim: Tapir Publishers
Walree, F., Yamaguchi, K., 1993, Hydrofoil research: model tests and computations, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 791–806, Tokyo: The Society of Naval Architects of Japan
Walree, F., 1999, Computational methods for hydrofoil craft in steady and unsteady flow, Ph.D. thesis, Technical University of Delft, Delft
Walree, F., Luth, H. R., 2000, Scale effects on foils and fins in steady and unsteady flow, RINA Conf. on Hydrodynamics of High Speed Craft, November, article no. 15, p. 8, London, UK
Wehausen, J. H., Laitone, E. H., 1962, Surface waves, in Handbuch der Physik, ed. S. Flügge, Ch. 9, Springer-Verlag
Wehausen, J. H., 1973, The wave resistance of ships, Advances in Applied Mechanics, 13, 93–245CrossRefGoogle Scholar
Weissinger, J., 1942, The lift distribution of swept back wings, Translated in NACA TM1120
Werenskiold, P., 1993, Methods for regulatory and design assessment of planing craft dynamic stability, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 883–94, Tokyo: The Society of Naval Architects of Japan
Whicker, L. F., Fehlner, L. F., 1958, Free stream characteristics of a family of low aspect all movable control surfaces for application to ship design, DTNSRDC Report No. 933, Washington D.C
White, F., 1972, An analysis of axisymmetric turbulent flow past a long cylinder, Journal of Basic Engineering, 94, 200–6CrossRefGoogle Scholar
White, F. M., 1974, Viscous Fluid Flow, New York: McGraw-Hill Book Company
Whittaker, T., Elsässer, B., 2002, Coping with the wash. The nature of wash waves produced by fast ferries, Ingema, 11, 40–4Google Scholar
Wigley, W. G. S., 1942, Calculated and measured wave resistance on a series of forms defined algebraically, The prismatic coefficient and angle of entrance being varied independently, Trans RINA, 84, 52–74Google Scholar
Xu, L., Troesch, A. W., Vorus, W. S., 1998, Asymmetric vessel and planing hydrodynamics, J. Ship Res., 42, 3, 187–98Google Scholar
Yamakita, K., Itoh, H., 1998, Sea trial test results of the wear characteristics of SES bow seal fingers, In Proc. Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koteryama, M. Ohkusu, pp. 471–6, Fukuoka, Japan: RIAM, Kyushu University
Yamamoto, Y., Ohtsubo, H., Kohno, Y., 1984, Water impact of wedge model, Journal of the Soc. Nav. Arch. Japan, 155, 236–45CrossRefGoogle Scholar
Yang, Q., 2002, Wash and wave resistance of ships in finite water depth, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Yang, Q., Faltinsen, O. M., Zhao, R., in press, Green function of steady motion in finite water depth, J. Ship Res.
Zhang, S., Yue, D. K. P., Tanizawa, K., 1996, Simulation of plunging wave impact on a vertical wall, J. Fluid Mech., 327, 221–54
Zhao, R., Faltinsen, O. M, 1992, Slamming loads on high-speed vessel, In Proc. 19th Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
Zhao, R., Faltinsen. O. M., 1993, Water entry of two-dimensional bodies, J. Fluid Mech., 246, 593–612CrossRefGoogle Scholar
Zhao, R., Faltinsen, O. M., Aarsnes, J. V., 1996, Water entry of arbitrary two-dimensional sections with and without flow separation, In Proc. 21st Symp. on Naval Hydrodynamics, pp. 408–23, Washington, D. C.: National Academy Press
Zhao, R., Faltinsen, O. M., Haslum, H., 1997, A simplified non-linear analysis of a high-speed planing craft in calm water, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 431–8, South Yarra, Victoria, and London: Baird Publications
Aarsnes, J. V., 1984, Current forces on ships. Dr.ing. thesis, Report UR-84-39, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Aarsnes, J. V., Faltinsen, O. M., Pettersen, B., 1985, Application of a vortex tracking method to current forces on ships. In Proc. Conf. Separated Flow around Marine Structures, pp. 309–46, Trondheim: Nor. Inst. Technol
Abbott, J. H., Doenhoff, A. E., 1959, Theory of Wing Sections, New York: Dover Publications, Inc
Abramowitz, M., Stegun, I., 1964, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover Publications Inc
Abramson, N., 1974, Structural dynamics of advanced marine vehicles, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price., pp. 344–57, London: Mechanical Engineering Publications Ltd
Adegeest, L. J. M., 1995, Nonlinear hull girder loads, Ph.D. thesis, Delft University of Technology, Faculty Mech. Eng. and Mar. Tech., Delft
Allison, J., 1993, Marine waterjet propulsion, Trans. SNAME, 101, 275–335Google Scholar
Anderson, J. D., 2001, Fundamentals of Aerodynamics, third edition, New York: McGraw-Hill Book Company
Andrewartha, M., Doctors, L., 2001, How many foils? A study of multiple hydrofoil configurations. In Proc. FAST 2001, Vol. 3, pp. 79–86, London: The Royal Institution of Naval Architects
Ankudinov, V., Kaplan, P., Jacobsen, B. K., 1993, Assessment and principal structure of the modular mathematical model for ship maneuverability prediction and real-time maneuvering simulations, In Proc. MARSIM'93, St. John's, Newfoundland
Arai, M., Myanchi, T., 1998, Numerical study of the impact of water on cylindrical shells, considering fluid-structure interactions, In Proc. PRADS'98, ed. M. C. W. Oosterveld, S. G. Tan, pp. 59–68, London and New York: Elsevier Applied Science
Armand, J. L., Cointe, R., 1986, Hydrodynamic impact analysis of a cylinder, In Proc. Fifth Int. Offshore Mech. and Arctic Engng. Symp., Vol. 1, pp. 609–34, ASME
Auf'M Keller, W. H., 1973, Extended diagrams for determining the resistance and required power for single-screw ships, Intern. Shipb. Progr., 20, 133–42CrossRefGoogle Scholar
Baarholm, R. J., 2001, Theoretical and experimental studies of wave impact underneath decks of offshore platforms, Dr. Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Baba, E., 1969, Study on separation of ship resistance components, Mitsubishi Technical Bulletin, No. 59
Bailey, D. S., 1976, The NPl high speed round bilge displacement hull series, Maritime Technology Monograph No. 4, London, UK: RINA
Baird, N., 1998, The World Fast Ferry Market, Melbourne, Australia: Baird Publications
Bal, S., Kinnas, S. A., Lee, H., 2001, Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface, J. Ship Res., 45, 1, 34–49Google Scholar
Barcellona, M., Landrini, M., Greco, M., Faltinsen, O. M., 2003, An experimental investigation of bow water shipping, J. Ship Res., 47, 4, 327–46Google Scholar
Barringer, I. E., 1998, The hydrodynamics of ship sections entering and exiting a fluid, Ph.D. thesis, Dept. of Mathematics, Brunel University
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press
Beek, T., 1992, Application limits for propellers at high speeds, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 121–32, Amsterda Elsevier Science Publishers BV
Berlekom, W. B., Goddard, T. A., 1972, Maneuvering of large tankers, Trans. SNAME, 80, 264–98Google Scholar
Berstad, A. J., Faltinsen, O. M., Larsen, C. M., 1997, Fatigue crack growth in side longitudinals, In Proc. NAV&HSMV, pp. 5.3–15, Naples: Dipartimento Ingeneria-Università di Napoli “Federico II.”
Berstad, A. J., Larsen, C. M., 1997, Fatigue crack growth in the hull structure of high speed vessels, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 255–62, South Yarra, Victoria, and London: Baird Publications
Bertram, V., 1999, Numerical investigation of steady flow effects in three-dimensional seakeeping computations. In Proc. 22nd Symposium on Naval Hydrodynamics, Washington D. C.: Office of Naval Research–Dept. of the Navy
Bertram, V., Iwashita, H., 1996, Comparative evaluation of various methods to predict seakeeping of fast ships, Schiff & Hafen, 48, 6, 54–8Google Scholar
Besch, P. K., Liu, Y-N, 1972, Bending flutter and torsional flutter of flexible hydrofoil struts, In Proc. Ninth Symposium on Naval Hydrodynamics, ed. R. Brard, A. Castera, Vol. 1, pp. 343–400, Arlington, Va.: Office of Naval Research–Department of the Navy
Bethwaite, F., 1996, High Performance Sailing, Shrewsbury, England: Waterline
Beukelman, W., 1991, Slamming on forced oscillating wedges at forward speed, Part I: Test results, Rep. no. 888, Delft University of Technology, Ship Hydromechanics Laboratory, Netherlands
Billingham, J., King, A. C., 2000, Wave Motion, Cambridge: Cambridge University Press
Birkhoff, G., Zarantonello, E. H., 1957, Jets, Wakes and Cavities, New York: Academic Press Inc
Bishop, R. E. D., Price, W. G., 1979, Hydroelasticity of Ships, Cambridge: Cambridge University Press
Bisplinghoff, R. L., Ashley, H., Halfman, R. L., 1996, Aeroelasticity, New York: Dover Publications
Blevins, R. D., 1990, Flow Induced Vibration, Malabar, Florida: Krieger Publishing Company
Blok, J. J., Beukelman, W., 1984, The high speed displacement ship systematic series hull forms, Trans. SNAME, 92, 125–50Google Scholar
Blount, D. L., 1997, Design of propeller tunnels for high-speed craft, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 151–6, South Yarra, Victoria, and London: Baird Publications
Blount, D. L., Codega, L. T., 1992, Dynamic stability of planing boats, Marine Technology, 29, 1, 4–12Google Scholar
Bouard, R., Coutanceau, M., 1980, The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104, J. Fluid Mech., 101, 3, 583–607CrossRefGoogle Scholar
Bowden, B., Davison, N., 1974, Resistance increments due to hull roughness associated with form factor extrapolation methods, NPL Ship Division Report TM 380
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford and New York: Oxford University Press
Breslin, J. P., 1957, Application of ship-wave theory to the hydrofoil of finite span, J. Ship Res., 1, 1, 27–55Google Scholar
Breslin, J. P., 1958, Discussion of the paper by K. L. Wadlin, In Proc. Second Symp. on Naval Hydrodynamics, pp. 434–40, Washington, D. C.: Office of Naval Research–Department of the Navy
Breslin, J. P., 1994, Hydrofoil ships – fantasies, facts and fysiks, DCAMM Anniversary Volume, Danish Centre for Appl. Math. and Mech., Techn. Univ. of Denmark, Lyngby
Breslin, J. P., Andersen, P., 1994, Hydrodynamics of Ship Propellers, Cambridge: Cambridge University Press
Brix, J., 1993, Maneuvering Technical Manual, Hamburg: Seehafen Verlag GmbH
Brizzolara, S., 2003, Hydrodynamic analysis of interceptors with computational fluid dynamics methods, In Proc. FAST'2003, ed. P. Cassella, Vol. III, Session E, pp. 49–56. Naples: Dipartimento Ingegneria Navale–Universitè di Napoli “Federico II.”
Brug, J. B., Beukelman, W., Prins, G. J., 1971, Hydrodynamic forces on a surface piercing flat plate, Report no. 325, Shipbuilding Laboratory, Delft University of Technology, Delft, The Netherlands
Bryant, J. P., 1983, Waves and wave groups in deep water, In Nonlinear Waves, ed. L. Debnath, Ch. 6, pp. 100–15, Cambridge: Cambridge University Press
Buckingham, E., 1915, Model experiments and the forms of empirical equations, Trans. ASME, 37, 263–96Google Scholar
Carlton, J. S., 1994, Marine Propellers and Propulsion, Oxford: Butterworth-Heineman
Carstensen, C., 1983, Beitrag zur Berechnung von ebenen Einlaufströmungen, Dissertation, Technische Universität Berlin, D83, März
Casanova, R. L., Latorre, R., 1992, The achievements of high performance in marine vehicles over the period 1970–1990, In Proc. HPMV'92, pp. O/A61–O/A66, Alexandria, Va.: American Society of Naval Engineers
Cebeci, T., 2004, Analysis of Turbulent Flows, second revised and expanded edition, Oxford: Elsevier
Celano, T., 1998, The prediction of porpoising inception for modern planing craft, Trans. SNAME, 106, 269–92Google Scholar
Chapman, R. B., 1972, Hydrodynamic drag of semisubmerged ships, J. of Basic Eng., Trans. ASME, 94 Series D, 4, 879–84CrossRefGoogle Scholar
Chapman, R. B., 1976, Free surface effects for yawed surface-piercing plates, J. Ship Res., 20, 3, 125–36Google Scholar
Chezhian, M., 2003, Three-dimensional analysis of slamming, Dr.ing thesis, Dept. of Marine Technology, NTNU, Trondheim, Norway
Cleary, W. A., Robertson, J. B., Yagle, R. A., 1971, The results and significance of strength studies of Great Lakes bulk ore carrier, Edward L. Ryerson, In SNAME Symp. on Hull Stresses in Bulk Carriers in the Great Lakes and Gulf of St. Lawrence Wave Environment, Paper G, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Clement, E. P., Blount, D. L., 1963, Resistance tests of a systematic series of planing hull forms, Trans. SNAME, 71, 201–77Google Scholar
Clement, E. P., Koelbel, J. G., 1992, Optimized design for stepped planing monohulls and catamarans, In Proc. HPMV'92, pp. PC35–PC44, Alexandria, Va.: American Society of Naval Engineers
Clough, R. W., Penzien, J., 1993, Dynamics of Structures, second edition, New York: McGraw-Hill, Inc
Cohen, S., Blount, D., 1986, Research plan for the investigation of dynamic instability of small high-speed craft, Trans. SNAME, 94, 197–214Google Scholar
Cointe, R., 1991, Free surface flows close to a surface-piercing body, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 319–34, Philadelphia: Society for Industrial and Applied Mathematics
Colagrossi, A., Lugni, C., Landrini, M., Graziani, G., 2001, Numerical and experimental transient tests for ship seakeeping, Int. Journal Off. and Ocean Struct., 11, 67–73Google Scholar
Crane, C. L., Eda, H., Landsburg, A., 1989, Controllability, In Principles of Naval Architecture, Vol. III, Chapter IX, ed. E. V. Lewis, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Cummins, W. E., 1962, The impulse response function and ship motions, Schiffstechnik, 9, 47, 101–9Google Scholar
Cusanelli, D. S., Karafiath, G., 1997, Integrated wedge-flap for enhanced powering performance, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 751–64, South Yarra, Victoria, and London: Baird Publications
Day, J. P., Haag, R. J., 1952, Planing Boat Porpoising, New York: Webb Institute of Naval Architecture
Day, S., Clelland, D., Nixon, E., 2003, Experimental and numerical investigation of “Arrow” Trimarans, In Proc. FAST 2003, ed. P. Casella, Vol. III, Session D2, pp. 23–36, Naples: Dipartimenta Ingegneria navale, Universtà di Napoli “Federico II.”
Delany, N. K., Sorensen, N. E., 1953, Low-speed drag of cylinders of various shapes. Washington, D. C.: NACA Technical Note 3038
Divitiis, N., Socio, L. M., 2002, Impact of floats on the water, J. Fluid Mech., 471, 365–79CrossRefGoogle Scholar
Dobrovol'skaya, Z. N., 1969, On some problems of fluid with a free surface, J. Fluid Mech., 36, 4, 805–29CrossRefGoogle Scholar
Doctors, L. J., 1978, Hydrodynamic power radiated by a heaving and pitching air-cushion vehicle, J. Ship Res., 22, 2, 67–79Google Scholar
Doctors, L. J., 1992, The use of pressure distributions to model the hydrodynamics of air-cushion vehicles and surface effect ships, In Proc. HPMV'92, pp. SES56–SES72, Alexandria, Va.: American Society of Naval Engineers
Doctors, L. J., 2003, Hydrodynamics of the flow behind a transom stern, In Proc. Twenty-Ninth Israel Conference on Mechanical Engineering, Paper 20–1, 11 pp., Haifa, Israel
Doctors, L. J., Day, A. H., 1997, Resistance prediction for transom-stern vessels, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 743–50, South Yarra, Victoria, and London: Baird Publications
Doctors, L. J., Sharma, S. D., 1972, The wave resistance of an air-cushion vehicle in steady and accelerated motion, J. Ship Res., 16, 4, 248–60Google Scholar
Dorf, R. C., Bishop, R. H., 1998, Modern Control Systems, Menlo Park, Calif.: Addison Wesley Longman, Inc
Doyle, R., Whittaker, T. J. T., Elsasser, B., 2001, A study of fast ferry wash in shallow water, In Proc. FAST 2001, Vol. 1, pp. 107–20, London: The Royal Institution of Naval Architects
Eda, H., 1980, Rolling and steering performance of high speed ships – simulation studies of yaw-roll-rudder coupled instability, In Proc. 13th Symp. on Naval Hydrodynamics, pp. 115–31, Washington, D. C.: Office of Naval Research–Department of the Navy
Etkin, B., 1959, Dynamics of Flight: Stability and Control, New York: John Wiley & Sons, Inc
Falck, S., 1991, Seakeeping of foil catamarans. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 209–21, Trondheim: Tapir Publishers
Faltinsen, O. M., 1972, Wave forces on a restrained ship in head-sea wave, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, vol. 2, pp. 1763–844. Arlington, Va.: Office of Naval Research–Department of the Navy
Faltinsen, O. M., 1983, Bow flow and added resistance of slender ships at high Froude number and low wavelengths, J. Ship Res., 27, 160–71Google Scholar
Faltinsen, O. M., 1990, Sea Loads on Ships and Offshore Structures, Cambridge: Cambridge University Press
Faltinsen, O. M., 1997, The effect of hydroelasticity on slamming, Phil. Trans. R. Soc. Lond. A, 355, 575–91CrossRefGoogle Scholar
Faltinsen, O. M., 1999, Water entry of a wedge by hydroelastic orthotropic plate theory, J. Ship Res., 43, 3, 180–193Google Scholar
Faltinsen, O. M., 2000, Water impact in ship and ocean engineering, In Proc. Fourth Int. Conf. on Hydrodyn., ed. Y. Goda, M. Ikehata, K. Suzuki, pp. 17–36, Yokohama: ICHD2000 Local Organizing Committee
Faltinsen, O. M., 2001, Steady and vertical dynamic behaviour of prismatic planning hulls, In Proc. 22ndIntern Conf. HADMAR 2001, pp. 89–104, Varna, Bulgaria: Bulgarian Ship Hydrodynamics Centre
Faltinsen, O. M., Helmers, J. B., Minsaas, K. J., Zhao, R., 1991a, Speed loss and operability of catamarans and SES in a seaway, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan. Vol. 2, pp. 709–25, Trondheim: Tapir Publishers
Faltinsen, O. M., Hoff, J. R., Kvålsvold, J., Zhao, R., 1992, Global wave loads on high-speed catamarans, In Proc. PRADS'92, ed. J. B. Caldwell, G. Ward, Vol. 1, pp. 1.360–1.375, London and New York: Elsevier Applied Science
Faltinsen, O. M., Holden, K. O., Minsaas, K. J., 1991b, Speed loss and operational limits of high-speed marine vehicles, In Proc. IMAS'91 – High Speed Marine Transportation, pp. 13–21, London: The Institute of Marine Engineers
Faltinsen, O. M., Kvålsvold, J., Aarsnes, J. V., 1997, Wave impact on a horizontal elastic plate, J. Mar. Sci. Technol., 2, 2, 87–100CrossRefGoogle Scholar
Faltinsen, O. M., Landrini, M., Greco, M., 2004, Slamming in marine applications, J.Eng. Math., 48, 187–217CrossRefGoogle Scholar
Faltinsen, O. M., Minsaas, K., Liapis, N., Skjørdal, S. O., 1980, Prediction of resistance and propulsion of a ship in a seaway, In Proc. 13th Symp. on Naval Hydrodynamics, ed. T. Inui, pp. 505–30. Tokyo: The Shipbuilding Research Association of Japan
Faltinsen, O. M., Pettersen, B., 1983, Vortex shedding around two-dimensional bodies at high Reynolds number, In Proc. 14th Symp. on Naval Hydrodynamics, pp. 1171–213, Washington, D. C.: National Academy Press
Faltinsen, O. M., Svensen, T. E., 1990, Incorporation of seakeeping theories on CAD, In Proc. of Int. Symp. computational fluid dynamics and CAD in Ship Design, ed. G. van Oortmersen, pp. 147–64, Amsterdam: Elsevier Science Publishers, B.V
Faltinsen, O. M., Zhao, R., 1991a, Numerical predictions of ship motions at high forward speed, Phil. Trans. R. Soc. Lond. A, 334, 241–52CrossRefGoogle Scholar
Faltinsen, O. M., Zhao, R., 1991b, Flow prediction around high-speed ships in waves, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 265–88, Philadelphia: Society for Industrial and Applied Mathematics
Faltinsen, O. M., Zhao, R., 1998, Water entry of ship sections and axisymmetric bodies, In AGARD Report 827 High Speed Body Motions in Water, pp. 24-1–24-11, Neuilly-Sur-Seine, Cedex, France: AGARD/NATO
Feifel, M. W., 1981, Advanced numerical methods for hydrofoil systems design and experimental verification, In Proc. Third Int. Conf. on Num. Ship Hydrodynamics, ed. J-C. Dern, H. J. Haussling, pp. 365–74, Paris: Bassin d'Essais des Carénes
Fischer, H., Matjasic, K., 1999, The Hoverwing technology – bridge between WIG and ACV, In RTO Meeting Proc. 15 – Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 30-1–30-7, Neuilly-Sur-Seine, Cedex, France: Res. and Techn. Org., NATO
Flagg, C. N., Newman, J. N., 1971, Sway added-mass coefficients for rectangular profiles in shallow water, J. Ship Res., 15, December, 257–65Google Scholar
Fontaine, E., Faltinsen, O. M., Cointe, R., 2000, New insight into generation of ship bow waves, J. Fluid Mech., 421, 15–38CrossRefGoogle Scholar
Førde, M., Ørbekk, E., Kubberud, N., 1991, Computational fluid dynamics applied to high speed craft with special attention to water intake for water jets, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan., Vol. 1, pp. 69–89, Trondheim: Tapir Publishers
Fossen, T. I., 2002, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Trondhei Marine Cybernetics AS
Fridsma, G., 1969, A systematic study of the rough-water performance of planing boats, Report 1275, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
Fridsma, G., 1971, A systematic study of the rough-water performance of planing boats; part 2, irregular waves, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
Froude, W. W., 1877, Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body, Trans. Inst. of Naval Arch., London, UK
Fujino, M., 1968, Experimental studies on ship maneuverability in restricted waves – part I, Intern. Shipbuilding Progr., 15, 168, 279–301CrossRefGoogle Scholar
Fujino, M., 1976, Maneuverability in restricted waters: state of the art, report no. 184, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Fujino, M., 1996, Keynote lecture: prediction of ship manoeuvrability: state of the art, Marine Simulation and Ship Manoeuvrability, ed. M. S. Chislett, pp. 371–87, Rotterda Balkema
Garrett, R., 1987, The Symmetry of Sailing: The Physics of Sailing for Yachtsmen, London: Adlard Coles
Gawn, R. W. L., 1953, Effect of pitch and blade width on propeller performance, Trans. RINA, 95, 157–93Google Scholar
Ge, C., 2002, Global hydroelastic response of catamarans due to wetdeck slamming, Dr.Ing thesis, Dept. of Marine Technology, NTNU, Trondheim
Ge, C., Faltinsen, O. M., Moan, T., 2005, Global hydroelastic response of catamarans due to wetdeck slamming, J. Ship Res., 49, 1, 24–42Google Scholar
Gerritsma, J., Beukelman, W., 1972, Analysis of the resistance increase in waves of a fast cargo ship, Intern. Shipbuilding Progr., 19, 217, 285–93CrossRefGoogle Scholar
Geurst, J. A., 1960, Linearized theory for fully cavitated hydrofoils, Intern. Shipbuilding Progr., 7, 65, 17–27CrossRefGoogle Scholar
Giesing, J. P., 1968, Nonlinear two-dimensional unsteady potential flow with lift, J. Aircraft, 5, 2, 135–43CrossRefGoogle Scholar
Goodman, R. A., 1971, Wave excited main hull vibration in large bulk carriers and tankers, Trans. RINA, 113, 167–84Google Scholar
Gradshteyn, I., Ryzhik, I., 1965, Tables of Integrals Series and Products, fourth ed., London and New York: Academic Press
Graff, W., Kracht, A., Weinblum, G. P., 1964, Some extensions of DW Taylor Standard Series, Trans SNAME, 72, 374–403
Greco, M., 2001, A two-dimensional study of green water loading. Dr.Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Greco, M., Landrini, M., Faltinsen, O. M., 2003, Local hydroelastic analysis on a VLFS with shallow draft, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 201–14, Oxford: Dept. of Eng. Science, University of Oxford
Green, A. E., 1936, Note on the gliding of a plate on the surface of a stream, Proc. Cambridge Phil.Soc., 32, 248–52CrossRefGoogle Scholar
Greenhow, M., 1986, High- and low-frequency asymptotic consequences of the Kramers-Kronig relations, J. Eng. Math., 20, 293–306CrossRefGoogle Scholar
Greenhow, M., Li, Y., 1987, Added masses for circular cylinders near or penetrating fluid boundaries – review, extension and application to water-entry, exit and slamming, Ocean Engng., 14, 4, 325–48CrossRefGoogle Scholar
Greenhow, M., Lin, W., 1983, Non-linear Free Surface Effects: Experiments and Theory, Report No. 83–19, Dept. Ocean Engn., Cambridge, Mass: Mass. Inst. Technol
Grigoropoulos, G. J., Loukakis, T. A., 2002, Resistance and seakeeping characteristics of a systematic series in the pre-planing condition (part I), Trans. SNAME, 110, 77–113Google Scholar
Grim, O., 1955, Die hydrodynamischen Kräfte beim Rollversuch, Schiffstechnik, 3, 14/15, 147–51Google Scholar
Haarhoff, S., Sharma, S. D., 2000, A note on the influence of speed and metacentric height on the yaw-rate stability of displacement ships, Intern. Workshop on Ship Maneuvering at the Hamburg Ship Model Basin, Hamburg, Germany, October 10–11
Hackmann, D., 1979, Written discussion to Jensen, J. J. and Pedersen, P. T. (1978)
Halstensen, S. O., Leivdal, P. A., 1990, The development of the SpeedZ Propulsion System, In Seventh International High Speed Surface Craft Conference, Kingston upon Thames: High Speed Surface Craft Ltd
Hama, F. R., Long, J. D., Hegart, J. C., 1956, On transition from laminar to turbulent flow, University of Maryland, Technical Note BN-81, AFOSR-TN-56-381
Hama, F. R., 1957, An efficient tripping device, J. Aeronautical Sciences, March
Hamamoto, M., Inoue, K., Kato, R., 1993, Turning motion and directional stability of surface piercing hydrofoil craft, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 807–18, Tokyo: The Society of Naval Architects of Japan
Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1994, Wave-induced springing and whipping of high-speed vessels, In Proc. Hydroelasticity in Marine Technology, ed. O. M. Faltinsen, C. M. Larsen, T. Moan, K. Holden, N. S. Spidsøe, pp. 191–204, Rotterdam and Brookfield: A. A. Balkema
Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1995, Long term springing and whipping stresses in high speed vessels, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 473–85, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
Haugen, E. M., 1999, Hydroelastic analysis of slamming on stiffened plates with application to catamaran wetdeck, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Haugen, E. M., Faltinsen, O. M., Aarsnes, J. V., 1997, Application of theoretical and experimental studies of wave impact to wetdeck slamming, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 423–30, South Yarra, Victoria, and London: Baird Publications
Havelock, T. H., 1908, The propagation of groups of waves in dispersive media with application to waves on water produced by a travelling disturbance, Proc. Royal Soc., London, Series A, LXXXI, 398–430CrossRefGoogle Scholar
Havelock, T. H., 1963, Collected Papers, ed. C. Wigley, Washington, D. C.: Office of Naval Research
Hayman, B., Haug, B., Valsgård, S., 1991, Response of fast craft hull structures to slamming loads, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 381–398, Trondheim: Tapir Publishers
Henry, C. J., Dugundji, J., Ashley, H., 1959, Aeroelastic stability of lifting surfaces in high-density fluids, J. Ship Res., 2, 4, 10–21Google Scholar
Hermundstad, O. A., 1995, Theoretical and experimental hydroelastic analysis of high speed vessels, Dr.ing thesis, Dept. of Marine Structures, NTNU, Trondheim
Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1995, Hydroelastic analysis of a flexible catamaran and comparison with experiments, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 487–500, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1997, Hydroelastic analysis of high speed catamaran in regular and irregular waves, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 447–54, South Yarra, Victoria, and London: Baird Publications
Hinze, J. O., 1987, Turbulence, second edition, New York: McGraw-Hill Book Company
Hoerner, S. F., 1965, Fluid Dynamic Drag, Published by the author
Holling, H. D., Hubble, E. N., 1974, Model resistance data of Series 65 Hullforms applicable to hydrofoils and planing craft, National Ship Research and Development Centee Report No. 4121, Bethesda, Md
Hooft, J. P., Nienhuis, U., 1994, The prediction of the ship's maneuverability in the design stage, SNAME Transactions, 102, 419–45Google Scholar
Hough, G. R., Moran, J. P., 1969, Froude number effects on two-dimensional hydrofoils, J. Ship Res., 13, 1, 53–60Google Scholar
Howison, S. D., Ockendon, J. R., Wilson, S. K., 1991, Incompressible water-entry problems at small deadrise angles, J. Fluid Mech., 222, 215–30CrossRefGoogle Scholar
Hughes, G., 1954, Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. Transactions of the Institution of Naval Architects, 96, 314–76Google Scholar
Huse, E., 1972, Pressure fluctuations on the hull induced by cavitating propellers, Norwegian Ship Model Experiment Tank Publications, No. 111, March, Trondheim
Ikeda, Y. Katayama, T., 2000a, Stability of high speed craft, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 401–9, Oxford: Elsevier Science Ltd
Ikeda, Y., Katayama, T., 2000b, Porpoising oscillations of very-high-speed marine craft, Phil. Trans. R. Soc. Lond. A, 358, 1905–15CrossRef
Ikeda, Y., Katayama, T., Okumura, H., 2000a, Characteristics of hydrodynamics derivatives in maneuverability equations for super-high-speed planing hulls, In Proc. Tenth Int. Offshore and Polar Engineering Conf., Vol. 4, pp. 434–44
Ikeda, Y., Okumura, H., Katayama, T., 2000b, Stability of a planing craft in turning motion, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 449–95, Oxford: Elsevier Science Ltd
Ikeda, Y., Yokomizo, K., Hamasaki, J., Umeda, N., Katayama, T., 1993, Simulation of running attitude and resistance of a high-speed craft using a database of hydrodynamic forces obtained by fully captive model experiments, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 583–94, Tokyo: The Society of Naval Architects of Japan
Inukai, Y., Horiuchi, K., Kinoshita, T., Kanou, H., Itakura, H., 2001, Development of a single-handed hydrofoil sailing catamaran, J. Mar. Sci. Technol. 6, 1, 31–41CrossRef
Ishiguro, T., Uchida, K., Manabe, T., Michida, R., 1993, A study on the maneuverability of the Super Slender Twin Hull, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 283–94, Tokyo: The Society of Naval Architects of Japan
Iwashita, H., Nechita, M., Colagrossi, A., Landrini, M, Bertram, V., 2000, A critical assessment of potential flow models for ship seakeeping, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 37–46. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
Jensen, J. J., 1996, Wave-induced hydroelastic response of fast monohull ships, CETENA Seminar on Hydroelasticity for Ship Structural Design, Genova: CETENA
Jensen, J. J., Dogliani, M., 1996, Wave-induced ship hull vibrations in stochastic seaways, Marine Structures, 9, 3/4, 353–87CrossRefGoogle Scholar
Jensen, J. J., Pedersen, P. T., 1978, Wave-induced bending moments in ships – a quadratic theory, Trans. RINA, 121, 151–65Google Scholar
Jensen, J. J., Pedersen, P. T., 1981, Bending moments and shear forces in ships sailing in irregular wave, J. Ship Res., 24, 4, 243–51
Jensen, J. J., Wang, Z., 1998, Wave induced hydroelastic response of a fast monohull displacement ship, In Proc. Second Int. Conf. on Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koterayama, M. Okkusu, pp. 411–27, Fukuoka, Japan: RIAM, Kyushu University
Johnston, R. J., 1985, Hydrofoils, Naval Engineers Journal, 97, 2, 142–99CrossRefGoogle Scholar
Kaiho, T., 1977, A new method for solving surface-piercing strut problems, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Kan, M., Hanaoka, T., 1964, Analysis for the effect of shallow water upon turning (in Japanese), J. Soc. Nav. Arch. Japan, 115, 49–55
Kaplan, P., Bentson, J., Davis, S., 1981, Dynamics and hydrodynamics of surface-effect ships, Trans. SNAME, 89, 211–47Google Scholar
Kapsenberg, G. K., Brizzolara, S., 1999, Hydroelastic effects of bow flare slamming on a fast monohull, In Proc. FAST'99, pp. 699–708, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Karman, T., 1929, The impact on seaplane floats during landing, NACA, Tech. Note No. 321, Washington, D.C
Karman, T., 1930, Mechanische Ähnlichkeit und Turbulenz, Nachr. Ges. Wiss. Goett, Math-Phys. Kl., 58–76
Kashiwagi, M., 1993, Heave and pitch motions of a catamaran advancing in waves, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 643–55, Tokyo: The Society of Naval Architects of Japan
Katayama, T., 2002, Experimental techniques to assess dynamic unstability of high-speed planing craft, non-zero heel, bow-diving, porpoising and transverse porpoising, In Proc. Sixth Int. Ship Stability Workshop, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Katayama, T., Hinami, T., Ikeda, Y., 2000, Longitudinal motion of a super high-speed planing craft in regular head waves, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 214–20. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
Kato, H., 1996, Cavitation, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 5, pp. 233–77, Southampton: Computational Mechanics Publications
Kerczek, C., Tuck, E. O., 1969, The representation of ship hulls by conformal mapping functions, J. Ship Res., 13, 4, 284–98Google Scholar
Kerwin, J. E., 1991, Hydrofoils and propellers. Lecture notes, Dept. of Ocean Engineering, MIT, Cambridge, Massachusetts
Kerwin, J. E., Lee, C-S., 1978, Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory, Trans. SNAME, 86, 218–53Google Scholar
Keuning, J. A., Gerritsma, J., 1982, Resistance tests of a series planing hull forms with 25 degrees deadrise angle, Intern. Shipbuilding Progr., 29, 337, 222–49CrossRefGoogle Scholar
Keuning, J. A., Gerritsma, J., Terwisga, P. F. van, 1993, Resistance tests of a series planing hull forms with 30 degrees deadrise angle and a calculation method based on this and similar systematic series, Intern. Shipbuilding Progr., 40, 424, 333–82Google Scholar
Kijima, K., Furukawa, Y., 2000, Ship maneuvering performance in waves, in Contemporary Ideas on Ship Stability, ed. D. Vassalos, N. Hamamoto, A. Papanikolaous, D. Molyneux, pp. 435–48, Amsterdam: Elsevier Science Ltd
Kinnas, S. A., 1996, Theory and numerical methods for the hydrodynamic analysis of marine propulsors, In Advances in Marine Hydrodynamics, ed. M. Okkusu, Ch. 6, pp. 279–323, Southampton: Computional Mechanics Publications
Kinsman, B., 1965, Wind Waves, Englewood Cliffs, N. J.: Prentice-Hall Inc
Klotter, K., 1978, Technische Schwingungslehre. Erster Band: Einfache Schwinger. Teil A: Lineare Schwingungen, Berlin, Heidelberg and New York: Springer-Verlag
Kochin, N. E., Kibel, I. A., Roze, N. V., 1964, Theoretical Hydromechanics, New York: Interscience Publishers
Koehler, B. R., Kettleborough, 1977, Hydrodynamics of a falling body upon a viscous incompressible fluid, J. Ship Res., 20, 190–8Google Scholar
Kotik, J., Mangulis, V., 1962, On the Kramers-Kronig relations for ship motions, Intern. Shipbuilding Progr., 9, 97, 183–94CrossRefGoogle Scholar
Koumoutsakas, P., Leonard, A., 1995, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1–38CrossRefGoogle Scholar
Koushan, K., 1997, Beitrag Zum Kanaleinfluss bei Tragflügelversuchen, Dr.ing thesis, Technische Universität Berlin
Krasny, R., 1987, Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184, 123–55CrossRefGoogle Scholar
Kruppa, C., 1990, Propulsion systems for high-speed marine vehicles, Second Conference on High-Speed Marine Craft, Oslo: Norwegian Society of Chartered Engineers
Kruppa, C., 1991, On the design of surface piercing propellers, Seventh GE-US Symposium Hydroacoustics, Part II, Hamburg, Germany
Kruppa, C. F. L., 1992, Testing surface piercing propellers, In Hydrodynamics: Computation, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 107–14, Amsterda Elsevier Science Publishers B.V
Kuchemann, D., 1978, The Aerodynamic Design of Aircraft, Oxford: Pergamon Press
Kutta, W. M., 1910, Über eine mit den Grundlagen des Flugsproblems in Beziehung stehende zweidimensionale Strömung. Sitzungsberichte der Königlischen Bayerschen Akademie der Wissenschaften. (This paper reproduced Kutta's unpublished thesis of 1902)
Kvålsvold, J., 1994, Hydroelastic modelling of wetdeck slamming on multihull vessels, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Kvålsvold, J., Faltinsen, O. M, 1995, Hydroelastic modelling of wetdeck slamming on multihull vessels, J. Ship Res., 39, 225–29Google Scholar
Kvålsvold, J., Faltinsen, O. M., Aarsnes, J. V., 1995, Effect of structural elasticity on slamming against wetdecks of multihull vessels, In Proc. PRADS'95, ed. H. Kim, J. W. Lee, 1, 1684–99, Seoul: The Society of Naval Architects of Korea
Lai, C., 1994, Three-dimensional planing hydrodynamics based on a vortex lattice method, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Landau, L. D., Lifshitz, E. M., 1959, Fluid Mechanics, Oxford: Pergamon Press
Larsson, L., Baba, E., 1996, Ship resistance and flow computations, Advances in Marine Hydrodynamics, ed. M. Ohkusu, pp. 1–75, Southampton: Computational Mechanics Publication
Larsson, L., Eliasson, R., 2000, Principles of Yacht Design, Camden, Maine: International Marine
Latorre, R., Miller, A., Philips, R., 2003, Drag reduction on a high speed trimaran, In Proc. FAST'03, ed. P. Casella, Vol. 1, Session A1, pp. 87–92, Naples: Dipartimento Ingegneria Navale–Università di Napoli “Federico II.”
Lavis, D. R., 1980, The development of stability standards for dynamically supported craft, a progress report, In Proc. of the High Speed Surface Craft Exhibition and Conference, pp. 384–94, Brighton, Sussex, UK: Kalerghi Publications
Lee, C. S., 1977, A numerical method for the solution of the unsteady lifting problem of rectangular and elliptic hydrofoil, master's thesis, Dept. of Ocean Engineering, MIT, Cambridge, Mass
Lee, W. T., Bales, S. L., 1984, Environmental data for design of marine vehicles, In Ship Structure Symposium '84, pp. 197–209, New York: The Society of Naval Architects and Marine Engineers
Lefandeux, F., 1999, New advances in sailing hydrofoils, In RTO Meeting Proc. 15. Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 15-1–15-14, Neuilly-Sur-Seine Cedex, France: Research and Technology Organization/NATO
Leonard, J. W., 1988, Tension Structures, Behaviour and Analysis, New York: McGraw-Hill Book Company
Lewandowski, E. M., 1997, Transverse dynamic stability of planing craft, Marine Technology, 34, 2, 109–18Google Scholar
Lewis, R. I., 1996, Turbomachinery Performance Analysis, London: Arnold
Lighthill, M. J., 1951, A new approach to thin airfoil theory, The Aeronautical Quarterly, III, 193–210CrossRefGoogle Scholar
Lighthill, M. J., 1960, Note on the swimming of slender ship, J.Fluid Mech., 9, 304–17CrossRefGoogle Scholar
Lin, W-M., Meinhold, M. J., Salvesen, N., 1995, SIMPLAN2, simulation of planing craft motions and load, Report SAIC-95/1000, SAIC, Annapolis, Md
Lord Kelvin (Sir William Thompson), 1887, On ship waves, Proc. Inst. Mech. Eng., London, UK
Lugni, C., Colagrossi, A., Landrini, M., Faltinsen, O. M., 2004, Experimental and numerical study of semi-displacement monohull and catamaran in calm water and incident waves, In Proc. 25th Symposium on Naval Hydrodynamics, Washington D. C.: Dept. of the Navy–Office of Naval Research
Lugt, H. J., 1981, Numerical modelling of vortex flows in ship hydrodynamics, a review, In Proc. Third Int. Conf. on Numerical Ship Hydrodynamics, ed. J-C. Dern, H. J. Hausling, pp. 297–316, Paris: Bassin d'Essais des Carènes
Lunde, J. K., 1951, On the linearized theory of wave resistance for displacement ships in steady and accelerated motions, Trans. SNAME, 59, 25–85Google Scholar
Maeda, H., 1991, Modelling techniques for dynamics of ships, Phil. Trans. R. Soc. Lond. A, 334, 307–17CrossRefGoogle Scholar
Malakhoff, A., Davis, S., 1981, Dynamics of SES bow seal fingers, AIAA Sixth Marine Systems Conf., AIAA – 81-2087
Manen, J. D., Oossanen, P. van, 1988, Resistance, propulsion and vibration, In Principles of Naval Architecture, ed. E. V. Lewis, Vol. II, Chapter VI, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Marchaj, C. A., 2000, Aero-hydrodynamics of Sailing, St. Michaels, Md: Tiller
Maruo, H., 1963, Resistance in waves, 60th Anniversary Series SNA Japan, 8, 67–102Google Scholar
Masilge, C., 1991, Konzeptien und Analyse eines interierten Strahlantriebes mit einem rotationssymmetrischen Grenzchichteinlauf, Dissertation, Technische Universität Berlin
Maskell, E. C., 1972, On the Kutta-Joukowski condition in two-dimensional unsteady flow, Roy. Aircraft Establishment, Fanborough, Techn. Memo Aero 1451
Matthews, S. T., 1967, Main hull girder loads on a Great Lakes bulk carrier, In Proc. SNAME Spring Meeting, pp. 11.1–11.32, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
Meek-Hansen, B., 1990, Damage investigation on diesel engines in high speed vehicles, In Proc. Fifth International Congress on Marine Technology Athens '90, pp. 309–403, Athens: Hellenic Institute of Marine Technology
Meek-Hansen, B., 1991, Engine running conditions during high speed marine craft operations, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 861–76, Trondheim: Tapir Publishers
Mei, C. C., 1983, The Applied Dynamics of Ocean Surface Waves, New York: John Wiley & Sons. Revised printing (1989), Singapore: World Scientific
Meyer, J. R., Wilkins, J. R. Jr., 1992, Hydrofoil development and applications, In Proc. HPMV'92, pp. HF1–HF24, Alexandria, Va.: American Society of Naval Engineers
Michell, J. M., 1898, The wave resistance of a ship, Phil. Mag., London, Series 5, 45, 106–23CrossRefGoogle Scholar
Milburn, D., 1990, Numerical model of 47'MLB high speed turns, USCG R&D Center Report
Milne-Thomson, L. M., 1996, Theoretical Hydrodynamics, Mineola, N. Y.: Dover Publications, Inc
Minsaas, K. J., 1993, Design and development of hydrofoil catamarans in Norway, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 83–99, Tokyo: The Society of Naval Architects of Japan
Minsaas, K. J., 1996, Flow studies with a pitot inlet in a cavitation tunnel, 20th ITTC Workshop on Waterjets, Supplement to the Report of the Waterjet Group, 21st ITTC, Trondheim, Norway
Minsaas, K. J., Thon, H. J., Kauczynski, W., 1986, Influence of ocean environment on thrusters performance. In Proc. Int. Symp. Propeller and Cavitation, supplementary volume, pp. 142–42. Shanghai: The Editorial Office of Shipbuilding of China
Molin, B., 1999, On the piston mode in moonpools, In Proc. 14th Int. Workshop on Water Waves and Floating Bodies, ed. R. F. Beck, W. W. Schultz, pp. 103–6, Ann Arbor, Mich.: Dept. of Nav. Arch. and Mar. Eng., The University of Michigan
Molland, A. F., Wellicome, J. F., Couser, P. R., 1996, Resistance experiments on a systematic series of high speed displacement catamaran hull forms: Variation of length-displacement ratio and breadth-draught ratio, Trans. RINA, 138 pt A, 55–72Google Scholar
Mørch, J. B., 1992, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, Dr.ing. thesis, Div. of Marine Hydrodynamics, NTNU, Trondheim
Mørch, H. J. B., Minsaas, K. J., 1991, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 143–61, Trondheim: Tapir Publishers
Morison, J. R., O'Brien, M. P., Johnson, J. W., Schaaf, S. A., 1950, The force exerted by surface waves on piles, Pet. Trans., 189, 149–54Google Scholar
Moulijn, J. 2000, Added resistance due to waves of surface effect ships, Ph. D. thesis, Technical University of Delft, The Netherlands
Müller-Graf, B., 1991, The effect of an advanced spray rail system on resistance and development of spray of semi-displacement round bilge hulls, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 125–41, Trondheim: Tapir Publishers
Müller-Graf, B., 1994, Spritzleisten und Staukeile-Massnahmen zur Verbesserung der hydrodynamischen Eigenschaften von Motorbooten (Spray rails and wedges – an effective tool to improve the hydrodynamic characteristics of motorboats). In Proc. of the 15th Symp. on Yacht Design and Yacht Building, 28– 29 Oct. 1994, pp. 11–65, Hamburg, Germany: Hamburger Messe und Congress GmbH und Deutcher Boots und Schiffbauer Verband
Müller-Graf, B., 1997, Dynamic stability of high speed small craft, WEGEMT Association Twenty-Fifth School Craft Technology, Athens, Greece: Dept. of Nav. Arch. and Mar. Eng., National Technical University of Athens
Müller-Graf, B, 1999a, Widerstand und hydrodynamische Eigenschaften der schnellen Knickspant-Katamarane der VWS-Serie'89 (Resistance and hydrodynamic characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 47–165, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
Müller-Graf, B, 1999b, Leistingsbedarf und Propulsionseigenschaften der schnellen Knickspantkatamarane der VWS-Serie'89 (Power requirements and propulsive characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 167–257, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
Müller-Graf, B., Schmiechen, M., 1982, On the stability of semidisplacement craft, In Proc. of Second Intern. Conf. on Stability of Ships and Ocean Vehicles, pp. 67–76, Tokyo: The Society of Naval Architects of Japan
Myrhaug, D., 2004, Lecture notes in oceanography: winds, waves, Trondhei Dept. of Marine Technology, NTNU
Nakatake, K. Ando, J., Kataoka, K., Yoshitake, A., 2003, A simple surface panel method “SQCM” in ship hydrodynamics, In Proc. Int. Symp. on Naval Architecture and Ocean Engineering, pp. 23/1–11, Shanghai: School of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, China
Nakos, D., 1990, Ship wave patterns and motions by a three-dimensional Rankine panel method, Ph.D. thesis, Dept. of Ocean Engineering, MIT, Cambridge
Newman, J. N., 1962, The exciting forces on fixed bodies in waves, J. Ship Res., 6, 4, 10–7Google Scholar
Newman, J. N., 1969, Lateral motion of a slender body between two parallel walls, J. Fluid Mech., 39, 1, 97–115CrossRefGoogle Scholar
Newman, J. N., 1977, Marine Hydrodynamics, Cambridge: The MIT Press
Newman, J. N., 1978, The theory of ship motions, Advances in Applied Mechanics, 18, 221–82CrossRefGoogle Scholar
Newman, J. N., 1987, Evaluation of the wave-resistance Green function: part 1 – the double integral, J. Ship Res., 31, 2, 79–90Google Scholar
Newman, J. N., Sclavounos, P., 1980, The unified theory of ship motions, In Proc. 13th Symp.on Naval Hydrodynamics, ed. T. Inui, pp. 373–97, Tokyo: The Shipbuilding Research Association of Japan
Newton, R. N., Rader, H. A., 1961, Performance data of propellers for high speed craft, Trans. RINA, 103, 2, 93–129Google Scholar
Nicholson, K., 1974, Some parametric model experiments to investigate broaching-to, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 160–6, London: Mechanical Engineering Publications Ltd
Nikuradse, J., 1930, Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren, Ing. – Arch., 1, 306–32CrossRefGoogle Scholar
Nikuradse, J., 1933, Strömungsgesetze in rauhen Rohren, Forschungsheft, 361, Berlin: VDI-Verlag
Nonaka, K., 1993, Estimation of hydrodynamic forces acting on a ship in maneuvering motion, In Proc. MARSIM'93, pp. 437–45, St. John's, Newfoundland
Nordenstrøm, N., 1973, A method to predict long-term distributions of waves and wave-induced motions and loads on ships and other floating structures, Det Norske Veritas Publications No 81, Det Norske Veritas, Høvik, Norway
Nordenstrøm, N., Faltinsen, O. M., Pedersen, B., 1971, Prediction of wave-induced motions and loads for catamarans, In Proc. Offshore Technology Conference, Paper No. OTC1418, Vol. 2, pp. 13–58, Richardson, Tex.: Offshore Technology Conference Inc
NORDFORSK, 1987, The Nordic Cooperative Project, Seakeeping performance of ships, In Assessment of a Ship Performance in a Seaway, Trondheim, Norway: MARINTEK
Norrbin, N. H., 1971, Theory and observation on the use of a mathematical model for ship maneuvering in deep and confined waters, SSPA Report No. 68, Gothenborg
NS-ISO 2631-31. utgave November 1985 (Figure 1 side 6)
Nwogu, O., 1993, An alternative form of Boussinesq equations for nearshore wave propagation, J. of Waterway, Port, Coastal and Ocean Engineering, 119, 6, 618–38CrossRefGoogle Scholar
Ochi, M. K., 1964, Prediction of occurrence and severity of ship slamming at sea, In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 545–96. Washington, D. C.: Office of Naval Research–Department of the Navy
Ochi, M. K., 1982, Stochastic analysis and probability distribution in random seas, Advances in Hydroscience, 13, 217–375CrossRefGoogle Scholar
Ogilvie, T. F., 1964, Recent progress towards the understanding and prediction of ship motions. In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 3–128. Washington, D. C.: Office of Naval Research–Department of the Navy
Ogilvie, T. F., 1969a, Lecture notes for the course Naval Hydrodynamics I, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Ogilvie, T. F., 1969b, Oscillating pressure fields on a free surface, Rep. no 030, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
Ogilvie, T. F., 1972, The wave generated by a fine ship bow, In Ninth Symp. Naval Hydrodynamics, ed. R. Brard and A. Castaro, Vol. 2, pp. 1483–525, Washington, D. C.: National Academy Press
Ogilvie, T. F., 1978, End effects in slender-ship theory, In Proc. Symp. on Applied Mathematics, dedicated to the late Prof. Dr. R. Timman, ed. A. J. Hermans, M. W. C. Oosterveld, pp. 119–39, Delft: Delft University Press
Ohkusu, M., 1969, On the heaving motion of two circular cylinders on the surface of a fluid, Reports of Research Institute for Applied Mechanics, Vol. XVII, No. 58, Kyushu University, Japan
Ohkusu, M., 1996, Hydrodynamics of ships in waves, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Chapter 2, pp. 77–132, Southampton: Computational Mechanics Publications
Ohkusu, M., Faltinsen, O. M., 1990, Prediction of radiation forces on a catamaran at high Froude number, In Proc. 18th Symp. on Naval Hydrodynamics, pp. 5–19, Washington, D. C.: National Academy Press
Økland, O., 2002, Numerical and experimental investigation of whipping in twinhull vessels exposed to severe wet deck slamming, Dr.ing. thesis, Dept. of Marine Technology, NTNU, Trondheim
Papanikolaou, A., 2002, Developments and potential of Advanced Marine Vehicles Concepts, Bulletin of the KANSAI Society of Naval Architects, 55, 50–4Google Scholar
Prandtl, L., 1933, Neuere Ergebnisse der Turbulenzforschung, Z. Ver. Dtch. Ing., 77, 5, 105–14, (Translated as NACA Tech. Mem. 720)Google Scholar
Prandtl, L., 1956, Strömungslehre, Braunschweig: Friedr. Vieweg & Sohn
Riabouchinski, D., 1920, Sur la resistance des fluids, Congres Intern. des Math, Strasbourg, pp. 568–85, Toulouse; Henri Villat, Librairie de l'Université
Rognebakke, O. F., Faltinsen, O. M., 2003, Coupling of sloshing and ship motions, J. Ship Res., 47, 3, 208–21
Ronæss, M., 2002, Wave induced motions of two ships advancing on a parallel course, Dr. Ing. Thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Rose, J. C., Kruppa, C., 1991, Surface piercing propellers – methodical series model test results, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1129–47, Trondheim: Tapir Publishers
Rose, J. C., Kruppa, C., Koushan, K., 1993, Surface piercing propellers – propeller/hull interaction, In Proc. FAST'93, ed. K. Sugai, M. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 867–81, Tokyo: The Society of Naval Architects of Japan
Rouse, H., 1961, Fluid Mechanics for Hydraulic Engineers, New York: Dover Publications, Inc
Saito, Y., Oka, M., Ikebuchi, K., Asao, M., 1991, Rough water capabilities of fully submerged hydrofoil craft “Jetfoil,” In Proc. FAST‘91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1013–28, Trondheim: Tapir Publishers
Salvesen, N., 1974, Second-order steady-state forces and moments on surface ships in oblique waves, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 212–26, London: Mechanical Engineering Publications
Salvesen, N., Tuck, E. O., Faltinsen, O. M., 1970, Ship motions and sea loads, Trans. SNAME, 78, 250–87Google Scholar
Sarpkaya, T., 1966, Separated flow about lifting bodies and impulsive flow about cylinders, AIAA Journal, 44, 414–20CrossRefGoogle Scholar
Sarpkaya, T., Shoaff, R. L., 1979, A discrete-vortex analysis of flow about stationary and transversely oscillating circular cylinders, Tech. Rep. NPS-69 SL 79011, Nav. Postgrad. Sch. Monterey, Calif
Sarpkaya, T., Isaacson, M., 1981, Mechanics of Wave Forces on Offshore Structures, New York: Van Nostrand Reinhold Company
Savitsky, D., 1964, Hydrodynamic design of planing hulls, Marine Technology, 1, 1, 71–96Google Scholar
Savitsky, D., 1988, Wake shapes behind planing hull forms, In Proc. Int. High-Performance Vehicle Conf., pp. VII, 1–15, Shanghai: The Chinese Society of Naval Architecture and Marine Engineering
Savitsky, D., 1992, Overview of planing hull developments, In Proc. HPMV'92, pp. PC1–PC14, Alexandria, Va.: American Society of Naval Engineers
Schlichting, H., 1979, Boundary-Layer Theory, New York: McGraw-Hill Book Company
Schmitke, R. T., Jones, E. A., 1972, Hydrodynamics and simulation in the Canadian hydrofoil program, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, Vol. 1, pp. 293–342, Arlington, Va.: Office of Naval Research–Department of the Navy
Schultz-Grunow, F, 1940, Neues Reibungswiderstandsgesetz für glatte Platten, Luftfahrtforschung, 17, 239–46 (Translated as NACA Tech. Mem. 986)Google Scholar
Schwartz, L. W., 1974, Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid Mech., 62, 553–78CrossRefGoogle Scholar
Sclavounos, P. D., 1987, An unsteady lifting line theory, J. Eng. Math., 21, 201–26CrossRefGoogle Scholar
Sclavounos, P., 1996, Computation of wave ship interactions, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 4, pp. 177–231, Southampton: Computational Mechanics Publications
Sclavounos, P. D., Borgen, H., 2004, Seakeeping analysis of a high-speed monohull with a motion control bow hydrofoil, J. Ship. Res., 28, 2, 77–117Google Scholar
Scolan, Y.-M., Korobkin, A. A., 2001, Three-dimensional theory of water impact, part 1, inverse Wagner problem, J. Fluid Mech., 440, 293–326CrossRefGoogle Scholar
Scolan, Y.-M., Korobkin, A. A., 2003, On energy arguments applied to slamming of elastic body, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 175–83, Oxford: Dept. of Eng. Science, University of Oxford
Sedov, I., 1940, On the theory of unsteady planing and the motion of a wing with vortex separation, NACA Technical Memorandum 942, 53 pp., Washington, D.C
Sedov, I., 1965, Two-Dimensional Problems in Hydrodynamics and Aerodynamics, New York: Interscience Publishers
Sfakiotakis, M., Lane, D. M., Davies, J. B. C., 1999, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24, 2, 237–52CrossRefGoogle Scholar
Shen, Y. T., Ogilvie, T. F., 1972, Nonlinear hydrodynamic theory for finite-span planing surface, J. Ship Res., 16, 3–20Google Scholar
Shen, Y. T., Eppler, R., 1979, Section design for hydrofoil wings with flaps, J. Hydrodynamics, 13, 2, 39–45Google Scholar
Shen, Y. T., 1985, Wing sections for hydrofoils, part 3: experimental verifications, J. Ship Res., 29, 1, 39–50Google Scholar
Skjørdal, S., Faltinsen, O. M., 1980, A linear theory of springing, J. Ship. Res., 24, 2, 74–84Google Scholar
Skomedal, N., 1985, Application of a vortex tracking method to three-dimensional flow past lifting surfaces and blunt bodies, Dr.ing thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Skorupka, S., Le Coz, D., Perdon, P., 1992, Performance assessment of the surface effect ship AGNES 200, DCN Bassin d'Essais des Carénes Translation, Paris, France
Søding, H., 1982, Prediction of ship steering capabilities, Schiffstechnik, 29, 3–29Google Scholar
Søding, H., 1984, Influence of course control on propulsion power, Schiff & Hafen/Kommandobrücke, 3, 63–8Google Scholar
Søding, H., 1997, Drastic resistance reductions in catamarans by staggered hulls, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 225–30, South Yarra, Victoria, and London: Baird Publications
Sørensen, A., 1993, Modelling and control of SES dynamics in the vertical plane, Dr.ing. thesis, ITK-report 1993:7-W, Nor. Inst. Technol., Trondheim
Sorensen, R. M., 1993, Basic Wave Mechanics: For Coastal and Ocean Engineers, New York: John Wiley & Sons Inc
Steen, S., 1993, Cobblestone effect on SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
Stoker, J. J., 1958, Water Waves. The Mathematical Theory with Applications, New York: John Wiley & Sons Inc
Storhaug, G., 1996, SWATH project: seakeeping and wave load analysis of a SWATH, revision 2, Det Norske Veritas report 96-0174, Det Norske Veritas, Høvik, Norway
Storhaug, G., Vidic-Perunovic, J., Rüdinger, F., Holtsmark, G., Helmers, J. R., Gu, X., 2003, Springing/whipping response of a large ocean going vessel – a comparison between numerical simulations and full scale measurements, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 117–29, Oxford: Dept. of Eng. Science, University of Oxford
Stratford, B. S., 1959, An experimental flow with zero pressure friction throughout its region of pressure rise, J. Fluid Mech., 5, 1, 17–35CrossRefGoogle Scholar
Svenneby, E. J., Minsaas, K. J., 1992, Foilcat 2900, Design and performance, In Proc. Third Conf. on High-Speed Marine Craft, paper no 6, Oslo: Norwegian Society of Chartered Engineers
Takaishi, Y., Matsumoto, T., Ohmatsu, S., 1980, Winds and Waves of the North Pacific Ocean 1964–1973. Statistical Diagrams and Tables, Tokyo: Ship Research Institute
Takaki, M., Iwashita, H., 1994, On the estimation methods of the seakeeping qualities for the high speed vessel in waves, applications of ship motion theory to design, 11th Marine Dynamics Symposium, Tokyo: Soc. Naval Arch. of Japan
Takemoto, H., 1984, Some considerations on water impact pressure, J. Soc. Naval Arch. Japan, 156, 314–22CrossRefGoogle Scholar
Tanaka, N., Ikeda, Y., Nishino, K., 1982, Hydrodynamic viscous force acting on oscillating cylinders with various shapes. In Proc. Sixth Symp. of Marine Technology, The Society of Naval Architects of Japan. (Also Rep. Dep. Nav. Arch., University of Osaka Prefecture, no. 407, Jan. 1983)
Tatinclaux, J. C., 1975, On the wave resistance of surface effect ships, Trans. SNAME, 83, 51–66Google Scholar
Taylor, T. E., Kerwin, J. E., Scherer, J. O., 1998, Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure, Int. Conf. on Waterjet Propulsion, Latest Development, London: The Royal Institution of Naval Architects
Terwisga, T., 1991, The effect of waterjet-hull interaction on thrust and propulsive efficiency. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1149–67, Trondheim: Tapir Publishers
Terwisga, T., 1992, On the prediction of the powering characteristics of hull-waterjet systems, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 115–20, Amsterda Elsevier Science Publishers B.V
Theodorsen, T., 1935, General theory of aerodynamic instability and mechanism of flutter, NACA Report 496
Todd, F. H., 1967, Resistance and propulsion. In Principles of Naval Architecture, ed. J. P. Comstock, pp. 228–462. New York: Society of Naval Architects and Marine Engineers
Torsethaugen, K., 1996, Model for a doubly peaked wave spectrum, Rep. no. STF22 A96204, SINTEF Civil and Environmental Engineering, Trondheim, Norway
Tregde, V., 2004, Aspects of ship design; optimization of aft hull with inverse geometry design, Ph.D thesis, Dept. of Marine Technology, NTNU, Trondheim
Triantafyllou, M. S., Triantafyllou, G. S., 1995, An efficient swimming machine, Scientific American, March, 40–8
Troesch, A. W., 1984, Effects of nonlinearities on hull springing, Marine Technology, 21, 4, 356–63Google Scholar
Troesch, A. W., 1992, On the hydrodynamics of vertically oscillating planing hulls, J. Ship Res., 36, 4, 317–31Google Scholar
Troesch, A. W., Falzarano, J. M., 1993, Modern nonlinear dynamical analysis of vertical plane motion of planing hulls, J. Ship Res., 37, 3, 189–99Google Scholar
Tuck, E. O., 1966, Shallow water flow past slender bodies, J. Fluid Mech., 26, 89–95CrossRefGoogle Scholar
Tuck, E. O., 1988, A strip theory for wave resistance, In Proc. Third Int. Workshop on Water Waves and Floating Bodies, ed. F. T. Korsmeyer, pp. 169–74, Cambridge, Mass.: Dept. of Ocean Engineering, MIT
Tuck, E. O., Lazauskas, L., 1998, Optimum spacing of a family of multihulls, Ship Technology Research, 45, 180–95Google Scholar
Tuck, E. O., Lazauskas, L., 2001, Free-surface pressure distributions with minimum wave resistance, ANZIAM Journal, 43, E75–E101CrossRefGoogle Scholar
Tuck, E. O., Newman, J. N., 1974, Hydrodynamic interactions between ships, In Tenth Symp. on Naval Hydrodynamics, ed. R. D. Cooper, S. W. Doroff, pp. 35–70, Arlington, Va.: Office of Naval Research–Department of the Navy
Tucker, M. J., Challenor, P. G., Carter, D. J. T., 1984, Numerical simulation of a random sea, a common error and its effect upon wave group statistics, Applied Ocean Research, 6, 2, 118–22CrossRefGoogle Scholar
Tucker, M. J., Pitt, E. G., 2001, Waves in Ocean Engineering, Elsevier Ocean Engineering Book Series, Vol. 5, ed. R. Bhattacharya, M. E. McCormick, Amsterdam: Elsevier
Tulin, M. P., 1953, Steady two-dimensional cavity flows about slender bodies, David Taylor Model Basin, Rep. 834, Washington D.C
Tulin, M., Landrini, M., 2000, Breaking waves in the ocean and around ships, In Proc. 23rd Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
Ulstein, T., 1995, Nonlinear effects of a flexible stern seal bag by cobblestone oscillations of an SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Ulstein, T., Faltinsen, O. M., 1996, Hydroelastic analysis of a flexible bag-structure, In Proc. 20th Symp. on Naval Hydrodynamics, pp. 702–21, Washington, D. C.: National Academy Press
Ulstein, T., Faltinsen, O. M., 1996, Two-dimensional unsteady planing, J. Ship Res., 40, 3, 200–10Google Scholar
Vanden-Broeck, J.-M., 1980, Nonlinear stern waves, J. Fluid Mech., 96, 3, 603–11CrossRefGoogle Scholar
Vassalos, D., Hamamoto, M., Papanikolaou, D, Molyneux, D., 2000, Contemporary Ideas on Ship Stability, Oxford: Elsevier Science Ltd
Venning, E., Haberman, W. L., 1962, Supercavitating propeller performance, Trans. SNAME70, 354–417
Vugts, J. H., 1968, Cylinder motions in beam waves, Nederlands Ship Research Centre, TNO, Delft
Wadlin, K. L., 1958, Mechanics of ventilation inception, In Proc. Second Symp. on Naval Hydrodynamics, pp. 425–46, ed. P. Eisenberg, Washington, D. C.: Office of Naval Research–Department of the Navy
Wagner, H., 1925, Über die Enstehung des Auftriebes von Tragflügeln, Z. Angew. Mech. 5, 1, 17–35CrossRef
Wagner, H., 1932, Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten, Zeitschr. f. Angew. Math und Mech, 12, 4, 193–235CrossRefGoogle Scholar
Wahab, R., Swaan, W. A., 1964, Course keeping and broaching in following waves, J. Ship Res., 7, 4, 1–15Google Scholar
Walderhaug, H., 1972, Ship Hydrodynamics, Basic Course (in Norwegian), Trondheim: Tapir Publishers
Walree, F., Yamaguchi, K., 1993, Hydrofoil research: model tests and computations, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 791–806, Tokyo: The Society of Naval Architects of Japan
Walree, F., 1999, Computational methods for hydrofoil craft in steady and unsteady flow, Ph.D. thesis, Technical University of Delft, Delft
Walree, F., Luth, H. R., 2000, Scale effects on foils and fins in steady and unsteady flow, RINA Conf. on Hydrodynamics of High Speed Craft, November, article no. 15, p. 8, London, UK
Wehausen, J. H., Laitone, E. H., 1962, Surface waves, in Handbuch der Physik, ed. S. Flügge, Ch. 9, Springer-Verlag
Wehausen, J. H., 1973, The wave resistance of ships, Advances in Applied Mechanics, 13, 93–245CrossRefGoogle Scholar
Weissinger, J., 1942, The lift distribution of swept back wings, Translated in NACA TM1120
Werenskiold, P., 1993, Methods for regulatory and design assessment of planing craft dynamic stability, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 883–94, Tokyo: The Society of Naval Architects of Japan
Whicker, L. F., Fehlner, L. F., 1958, Free stream characteristics of a family of low aspect all movable control surfaces for application to ship design, DTNSRDC Report No. 933, Washington D.C
White, F., 1972, An analysis of axisymmetric turbulent flow past a long cylinder, Journal of Basic Engineering, 94, 200–6CrossRefGoogle Scholar
White, F. M., 1974, Viscous Fluid Flow, New York: McGraw-Hill Book Company
Whittaker, T., Elsässer, B., 2002, Coping with the wash. The nature of wash waves produced by fast ferries, Ingema, 11, 40–4Google Scholar
Wigley, W. G. S., 1942, Calculated and measured wave resistance on a series of forms defined algebraically, The prismatic coefficient and angle of entrance being varied independently, Trans RINA, 84, 52–74Google Scholar
Xu, L., Troesch, A. W., Vorus, W. S., 1998, Asymmetric vessel and planing hydrodynamics, J. Ship Res., 42, 3, 187–98Google Scholar
Yamakita, K., Itoh, H., 1998, Sea trial test results of the wear characteristics of SES bow seal fingers, In Proc. Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koteryama, M. Ohkusu, pp. 471–6, Fukuoka, Japan: RIAM, Kyushu University
Yamamoto, Y., Ohtsubo, H., Kohno, Y., 1984, Water impact of wedge model, Journal of the Soc. Nav. Arch. Japan, 155, 236–45CrossRefGoogle Scholar
Yang, Q., 2002, Wash and wave resistance of ships in finite water depth, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
Yang, Q., Faltinsen, O. M., Zhao, R., in press, Green function of steady motion in finite water depth, J. Ship Res.
Zhang, S., Yue, D. K. P., Tanizawa, K., 1996, Simulation of plunging wave impact on a vertical wall, J. Fluid Mech., 327, 221–54
Zhao, R., Faltinsen, O. M, 1992, Slamming loads on high-speed vessel, In Proc. 19th Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
Zhao, R., Faltinsen. O. M., 1993, Water entry of two-dimensional bodies, J. Fluid Mech., 246, 593–612CrossRefGoogle Scholar
Zhao, R., Faltinsen, O. M., Aarsnes, J. V., 1996, Water entry of arbitrary two-dimensional sections with and without flow separation, In Proc. 21st Symp. on Naval Hydrodynamics, pp. 408–23, Washington, D. C.: National Academy Press
Zhao, R., Faltinsen, O. M., Haslum, H., 1997, A simplified non-linear analysis of a high-speed planing craft in calm water, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 431–8, South Yarra, Victoria, and London: Baird Publications

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Odd M. Faltinsen, Norwegian University of Science and Technology, Trondheim
  • Book: Hydrodynamics of High-Speed Marine Vehicles
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546068.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Odd M. Faltinsen, Norwegian University of Science and Technology, Trondheim
  • Book: Hydrodynamics of High-Speed Marine Vehicles
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546068.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Odd M. Faltinsen, Norwegian University of Science and Technology, Trondheim
  • Book: Hydrodynamics of High-Speed Marine Vehicles
  • Online publication: 15 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546068.013
Available formats
×