Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-19T22:50:38.825Z Has data issue: false hasContentIssue false

7 - Type III secretion and resistance to phagocytosis

from Part III - Evasion of cellular immunity

Published online by Cambridge University Press:  13 August 2009

Åke Forsberg
Affiliation:
Department of Medical Protection, Swedish Defence Research Agency, FOI, S-901 82 Umeå, Sweden
Roland Rosqvist
Affiliation:
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
Maria Fällman
Affiliation:
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
Brian Henderson
Affiliation:
University College London
Petra C. F. Oyston
Affiliation:
Defence Science and Technology Laboratory, Salisbury
Get access

Summary

INTRODUCTION

Phagocytosis is an essential first line of defence, which normally efficiently clears and destroys microorganisms. This process is mostly attributed to professional phagocytes: macrophages, monocytes, and neutrophils, which express specialised receptors that promote phagocytosis (Rabinovitch, 1995; Aderem and Underhill, 1999; see Chapter 1). These receptors recognise opsonins such as IgG and products of complement that bind to bacterial surfaces (see Chapter 4). Following phagocytic uptake, bacteria are normally killed and destroyed inside phagosomes, especially after maturation to phagolysosomes. Maturation is caused by fusion of the phagosome with endocytic vesicles causing an increasingly acidic environment, and finally fusion with lysosomes that contain digestive enzymes, mainly acid hydrolases (Tjelle et al., 2000). The professional phagocytes can also produce reactive oxygen and nitrogen (in macrophages) intermediates that contribute to killing (Hampton et al., 1998; Vazquez-Torres et al., 2000a). When activated, these cells secrete pro-inflammatory cytokines, which in turn stimulate other immune cells. Macrophages also serve as antigen presenting cells enabling generation of specific cellular and humoral defences (Morrisette et al., 1999; see Chapter 2). Therefore, it is not surprising that many microorganisms have developed strategies to circumvent phagocyte activity. The pathogens discussed in this chapter, Yersinia and Pseudomonas aeruginosa, directly block the engulfment process and remain extracellular, while other pathogens invade phagocytes and remodel the vesicle fusion events to promote persistence and replication.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderem, A. and Underhill, D. M. (1999). Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17, 593–623CrossRefGoogle ScholarPubMed
Aktories, K. (1997). Bacterial toxins that target Rho proteins. Journal of Clinical Investigation 99, 827–829CrossRefGoogle ScholarPubMed
Aktories, K., Schmidt, G., and Just, I. (2000). Rho GTPases as targets of bacterial toxins. Biological Chemistry 381, 421–426CrossRefGoogle Scholar
Altrutz, M. and Isberg, R. (1998). Involvement of focal adhesion kinase in invasin-mediated uptake. Proceedings of the National Academy of Sciences 95, 13,658–13,663CrossRefGoogle Scholar
Anderson, D. M. and Schneewind, O. (1997). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143CrossRefGoogle ScholarPubMed
Anderson, D. M., Fouts, D. E., Collmer, A., and Schneewind, O. (1999). Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proceedings of the National Academy of Sciences 96, 12,839–12,843CrossRefGoogle ScholarPubMed
Andersson, K., Carballeira, N., Magnusson, K., Persson, C., Stendahl, O., Wolf-Watz, H., and Fällman, M. (1996). YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Molecular Microbiology 20, 1057–1069CrossRefGoogle ScholarPubMed
Andersson, K., Magnusson, K.-E., Majeed, M., Stendahl, O., and Fallman, M. (1999). Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infection and Immunity 67, 2567–2574Google ScholarPubMed
Autenrieth, I. and Firsching, R. (1996). Penetration of M cells and destruction of Peyer's patches by Yersinia enterocolitica: an ultrastructural and histological study. Journal of Medical Microbiology 44, 285–294CrossRefGoogle ScholarPubMed
Barz, C., Abahji, T. N., Trulzsch, K., and Heesemann, J. (2000). The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Letters 482, 139–143CrossRefGoogle ScholarPubMed
Bavoil, P. M. and Hsia, R. C. (1998). Type III secretion in Chlamydia: a case of deja vu?Molecular Microbiology 28, 860–862CrossRefGoogle ScholarPubMed
Black, D. and Bliska, J. (1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. European Molecular Biology Organisation Journal 16, 2730–2744CrossRefGoogle Scholar
Black, D. S., Montagna, L. G., Zitsmann, S., and Bliska, J. B. (1998). Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets. Molecular Microbiology 29, 1263–1274CrossRefGoogle ScholarPubMed
Black, D. S. and Bliska, J. B. (2000). The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Molecular Microbiology 37, 515–527CrossRefGoogle ScholarPubMed
Bliska, J., Clemens, J., Dixon, J., and Falkow, S. (1992). The Yersinia tyrosine phosphatase: specificity of a bacterial virulence determinant for phosphoproteins in the J774A.1 macrophage. Journal of Experimental Medicine 176, 1625–1630CrossRefGoogle ScholarPubMed
Blocker, A., Gounon, P., Larquet, E., Niebuhr, K., Cabiaux, V., Parsot, C., and Sansonetti, P. (1999). The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. Journal of Cell Biology 147, 683–693CrossRefGoogle ScholarPubMed
Boland, A., Sory, M.-P., Iriarte, M., Kerbourch, C., Wattiau, P., and Cornelis, G. R. (1996). Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. European Molecular Biology Organisation Journal 15, 5191–5201Google Scholar
Bölin, I. and Wolf-Watz, H. (1988). The plasmid-encoded Yop2b protein of Yersinia pseudotuberculosis is a virulence determinant regulated by calcium and temperature at the level of transcription. Molecular Microbiology 2, 237–245CrossRefGoogle Scholar
Boyd, A. P., Lambermont, I., and Cornelis, G. R. (2000). Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. Journal of Bacteriology 182, 4811–4821CrossRefGoogle ScholarPubMed
Burrows, T. and Bacon, G. (1956). The basis of virulence in Pasteurella pestis: an antigen determining virulence. British Journal of Experimental Pathology 37, 481–493Google Scholar
Caron, E. and Hall, A. (1998). Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721CrossRefGoogle ScholarPubMed
Cary, L., Chang, J., and Guan, J. (1996). Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. Journal of Cell Science 109, 1787–1794Google ScholarPubMed
Cary, L., Han, D., Polte, T., Hanks, S., and Guan, J. (1998). Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. Journal of Cell Biology 140, 211–221CrossRefGoogle ScholarPubMed
Cheng, L. W., Anderson, D. M., and Schneewind, O. (1997). Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Molecular Microbiology 24, 757–765CrossRefGoogle ScholarPubMed
Chimini, G. and Chavrier, P. (2000). Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nature Cell Biology 2, E191–E196CrossRefGoogle ScholarPubMed
Choi, K., Kennedy, M., and Keller, G. (1993). Expression of a gene encoding a unique protein-tyrosine kinase within specific fetal- and adult-derived hematopoietic lineages. Proceedings of the National Academy of Sciences USA 90, 5747–5751CrossRefGoogle ScholarPubMed
Cirillo, D. M., Valdivia, R. H., Monack, D. M., and Falkow, S. (1998). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Molecular Microbiology 30, 175–188CrossRefGoogle ScholarPubMed
Clark, M., Hirst, B., and Jepson, M. (1998). M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infection and Immunity 66, 1237–1243Google ScholarPubMed
Coburn, J., Wyatt, R. T., Iglewski, B. H., and Gill, D. M. (1989). Several GTP-binding proteins including p21ras are preferred substrates of Pseudomonas aeruginosa exoenzyme S.Journal of Biological Chemistry 264, 9004–9008Google ScholarPubMed
Coburn, J. and Gill, D. M. (1991). ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infection and Immunity 59, 4259–4262Google ScholarPubMed
Coburn, J., Kane, A. V., Feig, L., and Gill, D. M. (1991). Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. Journal of Biological Chemistry 266, 6438–6446Google ScholarPubMed
Cowell, B. A., Chen, D. Y., Frank, D. W., Vallis, A. J., and Fleiszig, S. M. (2000). ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infection and Immunity 68, 403–406CrossRefGoogle ScholarPubMed
Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Review 13, 470–511CrossRefGoogle ScholarPubMed
da Silva, A., Rosenfield, J., Mueller, I., Bouton, A., Hirai, H., and Rudd, C. (1997a). Biochemical analysis of p120/130: a protein-tyrosine kinase substrate restricted to T and myeloid cells. Journal of Immunology 158, 2007–2016Google Scholar
da Silva, A., Li, Z., Vera, C., Canto, E., Findell, P., and Rudd, C. (1997b). Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proceedings of the National Academy of Sciences USA 94, 7493–7498CrossRefGoogle Scholar
Dacheux, D., Attree, I., Schneider, C., and Toussaint, B. (1999). Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infection and Immunity 67, 6164–6167Google ScholarPubMed
Dacheux, D., Toussaint, B., Richard, M., Brochier, G., Croize, J., and Attree, I. (2000). Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infection and Immunity 68, 2916–2924CrossRefGoogle ScholarPubMed
Dacheux, D., Attree, I., and Toussaint, B. (2001). Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infection and Immunity 69, 538–542CrossRefGoogle ScholarPubMed
Davis, K. J., Fritz, D. L., Pitt, M. L., Welkos, S. L., Worsham, P. L., and Friedlander, A. M. (1996). Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys (Cercopithecus aethiops). Archives of Pathology and Laboratory Medicine 120, 156–163Google Scholar
Denu, J., Stuckey, J., Saper, M., and Dixon, J. (1996). Form and function in protein dephosphorylation. Cell 87, 361–364CrossRefGoogle ScholarPubMed
Drozdov, I. G., Anisimov, A. P., Samoilova, S. V., Yezhov, I. N., Yeremin, S. A., Karlyshev, A. V., Krasilnikova, V. M., and Kravchenko, V. I. (1995). Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. Journal of Medical Microbiology 42, 264–268CrossRefGoogle ScholarPubMed
Dukuzumuremyi, J. M., Rosqvist, R., Hallberg, B., Akerstrom, B., Wolf-Watz, H., and Schesser, K. (2000). The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. Journal of Biological Chemistry 275, 35,281–35,290CrossRefGoogle ScholarPubMed
Ernst, J. (2000). Bacterial inhibition of phagocytosis. Cellular Microbiology 2, 379–386CrossRefGoogle ScholarPubMed
Fällman, M., Andersson, K., Håkansson, S., Magnusson, K., Stendahl, O., and Wolf-Watz, H. (1995). Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infection and Immunity 63, 3117–3124Google ScholarPubMed
Finck-Barbancon, V., Goranson, J., Zhu, L., Sawa, T., Wiener-Kronish, J. P., and Fleiszig, S. M. (1997). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Molecular Microbiology 25, 547–557CrossRefGoogle ScholarPubMed
Fleiszig, S. M., Wiener-Kronish, J. P., Miyazaki, H., Vallas, V., Mostov, K. E., Kanada, D., Sawa, T., Yen, T. S., and Frank, D. W. (1997). Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S.Infection and Immunity 65, 579–586Google ScholarPubMed
Forsberg, Å. and Wolf-Watz, H. (1988). The virulence protein Yop5 of Yersinia pseudotuberculosis is regulated at transcriptional level by plasmid pIB1 encoded transacting elements controlled by temperature and calcium. Molecular Microbiology 2, 121–133CrossRefGoogle Scholar
Forsberg, Å., Viitanen, A. M., Skurnik, M., and Wolf-Watz, H. (1991). The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Molecular Microbiology 5, 977–986CrossRefGoogle ScholarPubMed
Frank, D. W. (1997). The exoenzyme S regulon of Pseudomonas aeruginosa. Molecular Microbiology 26, 621–629CrossRefGoogle ScholarPubMed
Frithz-Lindsten, E., Du, Y., Rosqvist, R., and Forsberg, A. (1997). Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Molecular Microbiology 25, 1125–1139CrossRefGoogle ScholarPubMed
Frithz-Lindsten, E., Holmström, A., Jacobsson, L., Soltani, M., Olsson, J., Rosqvist, R., and Forsberg, Å. (1998). Functional complementation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Molecular Microbiology 29, 1155–1165CrossRefGoogle ScholarPubMed
Frithz-Lindsten, E., Rosqvist, R., Johansson, L., and Forsberg, A. (1995). The chaperone-like protein YevA of Yersinia pseudotuberculosis stabilises YopE in the cytoplasm but is dispensible for targeting to secretion loci. Molecular Microbiology 16, 635–647CrossRefGoogle Scholar
Fu, H., Coburn, J., and Collier, R. J. (1993). The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proceedings of the National Academy of Sciences USA 90, 2320–2324CrossRefGoogle ScholarPubMed
Fu, Y. and Galán, J. E. (1998). The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Molecular Microbiology 27, 359–368CrossRefGoogle ScholarPubMed
Fu, Y. and Galán, J. E. (1999). A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297CrossRefGoogle ScholarPubMed
Fu, H., Subramanian, R. R., and Masters, S. C. (2000). 14-3-3 proteins: Structure, function and regulation. Annual Review of Pharmacology and Toxicology 40, 617–647CrossRefGoogle ScholarPubMed
Galán, J. and Zhou, D. (2000). Striking a balance: Modulation of the actin cytoskeleton by Salmonella. Proceedings of the National Academy of Sciences USA 97, 8754–8761CrossRefGoogle ScholarPubMed
Galyov, E., Håkansson, S., Forsberg, Å., and Wolf-Watz, H. (1993). A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–732CrossRefGoogle ScholarPubMed
Galyov, E. E., Håkansson, S., and Wolf-Watz, H. (1994). Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. Journal of Bacteriology 176, 4543–4548CrossRefGoogle ScholarPubMed
Garrity-Ryan, L., Kazmierczak, B., Kowal, R., Comolli, J., Hauser, A., and Engel, J. N. (2000). The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infection and Immunity 68, 7100–7113CrossRefGoogle ScholarPubMed
Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K., and Barbieri, J. T. (1999). The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. Journal of Biological Chemistry 274, 36,369–36,372CrossRefGoogle ScholarPubMed
Goguen, J. D., Walker, W. S., Hatch, T. P., and Yother, J. (1986). Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis. Infection and Immunity 51, 788–794Google ScholarPubMed
Goosney, D. L., Celli, J., Kenny, B., and Finlay, B. B. (1999). Enteropathogenic Escherichia coli inhibitis phagocytosis. Infection and Immunity 67, 490–495Google Scholar
Greenberg, S., Chang, P., Silverstein, S. C. (1993). Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. Journal of Experimental Medicine 177, 529–534CrossRefGoogle ScholarPubMed
Grutzkau, A., Hanski, C., Hahn, H., and Riecken, E. (1990). Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 31, 1011–1015CrossRefGoogle ScholarPubMed
Guan, K. and Dixon, J. (1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556CrossRefGoogle ScholarPubMed
Guex, N. and Pietsch, M. C. (1997). SWISS_MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723CrossRefGoogle ScholarPubMed
Guex, N., Diemand, A., and Peitsch, M. C. (1999). Protein modelling for all. Trends in Biochemical Science 24, 364–367CrossRefGoogle ScholarPubMed
Gumbiner, B. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357CrossRefGoogle ScholarPubMed
Hackstadt, T. (2000). Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 1, 93–99CrossRefGoogle ScholarPubMed
Hackstadt, T., Scidmore, M. A., and Rockey, D. D. (1995). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proceedings of the National Academy of Sciences USA 23, 4877–4881CrossRefGoogle Scholar
Hackstadt, T., Rockey, D. D., Heinzen, R. A., Scidmore, M. A. (1996). Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. European Molecular Biology Organisation Journal 15, 964–977Google ScholarPubMed
Hahn, H. P. (1997). The type-IV pilus is the major virulence associated adhesin of Pseudomonas aeruginosa-a review. Gene 192, 99–108CrossRefGoogle Scholar
Håkansson, S., Galyov, E. E., Rosqvist, R., and Wolf-Watz, H. (1996a). The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Molecular Microbiology 20, 593–603CrossRefGoogle Scholar
Håkansson, S., Schesser, K., Persson, C., Galyov, E. E., Rosqvist, R., Homblé, F., and Wolf-Watz, H. (1996b). The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact dependent membrane disrupting activity. European Molecular Biology Organisation Journal 15, 5812–5823Google Scholar
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–514CrossRefGoogle ScholarPubMed
Hamid, N., Gustavsson, A., Andersson, K., McGee, K., Persson, C., Rudd, C. E., and Fallman, M. (1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microbial Pathogenesis 27, 231–242CrossRefGoogle ScholarPubMed
Hampton, M. B., Kettle, A. J., and Winterbourn, C. C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017Google ScholarPubMed
Hanski, C., Kutschka, U., Schmoranzer, H., Naumann, M., Stallmach, A., Hahn, H., Menge, H., and Riecken, E. (1989). Immunohistochemical and electron microscopic study of interaction of Yersinia enterocolitica serotype O8 with intestinal mucosa during experimental enteritis. Infection and Immunity 57, 673–678Google ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galán, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826CrossRefGoogle ScholarPubMed
Hartland, E., Green, S., Phillips, W., and Robins-Browne, R. (1994). Essential role of YopD in inhibition of the respiratory burst of macrophages by Yersinia enterocolitica. Infection and Immunity 62, 4445–4453Google ScholarPubMed
Henriksson, M. L., Rosqvist, R., Telepnev, M., Wolf-Watz, H., and Hallberg, B. (2000). Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochemical Journal 347, 217–222CrossRefGoogle ScholarPubMed
Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., and Holden, D. W. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403CrossRefGoogle ScholarPubMed
Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C., and Holden, D. W. (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Molecular Microbiology 30, 163–174CrossRefGoogle ScholarPubMed
Holmström, A., Pettersson, J., Rosqvist, R., Håkansson, S., Tafazoli, F., Fällman, M., Magnusson, K.-E., Wolf-Watz, H., and Forsberg, Å. (1997). YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Molecular Microbiology 24, 73–91CrossRefGoogle ScholarPubMed
Holmström, A., Olsson, J., Cherepanov, P., Maier, E., Nordfelth, R., Pettersson, J., Benz, R., Wolf-Watz, H., and Forsberg, Å. (2001). LcrV is a channel size determining component of the Yop effector translocon of Yersinia. Molecular Microbiology 39, 620–632CrossRefGoogle ScholarPubMed
Honda, H., Oda, H., Nakamoto, T., Honda, Z., Sakai, R., Suzuki, T., Saito, T., Nakamura, K., Nakao, K., Ishikawa, T., Katsuki, M., Yazaki, Y., and Hirai, H. (1998). Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130CasNature Genetics 19, 361–365CrossRefGoogle ScholarPubMed
Honda, H., Nakamoto, T., Sakai, R., and Hirai, H. (1999). p130(Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochemical Biophysical Research Communications 262, 25–30CrossRefGoogle Scholar
Hsia, R.-C., Pannekoek, Y., Ingerowski, E., and Bavoil, P. (1997). Type III secretion genes identify a putative virulence locus of Chlamydia. Molecular Microbiology 25, 351–359CrossRefGoogle ScholarPubMed
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Molecular Microbiology Reviews 62, 379–433Google ScholarPubMed
Hunter, A. J., Ottoson, N., Boerth, N., Koretzky, G. A., and Shimizu, Y. (2000). Cutting edge: a novel function for the SLAP-130/FYB adapter protein in beta 1 integrin signaling and T lymphocyte migration. Journal of Immunology 164, 1143–1147CrossRefGoogle Scholar
Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., and Yamamoto, T. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544Google ScholarPubMed
Ilic, D., Kanazawa, S., Furuta, Y., Yamamoto, T., and Aizawa, S. (1996). Impairment of mobility in endodermal cells by FAK deficiency. Experimental Cell Research 222, 298–303CrossRefGoogle ScholarPubMed
Iriarte, M. and Cornelis, G. R. (1998). YopT, a novel Yersinia Yop effector protein, affects the cytoskeleton of host cells. Molecular Microbiology 29, 915–929CrossRefGoogle Scholar
Iriarte, M., Sory, M. P., Boland, A., Boyd, A. P., Mills, S. D., Lambermont, I., and Cornelis, G. R. (1998). TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. European Molecular Biology Organisation Journal 17, 1907–1918CrossRefGoogle ScholarPubMed
Isberg, R. and Leong, J. (1990). Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871CrossRefGoogle Scholar
Jücker, M., McKenna, K., da Silva, A., Rudd, C., and Feldman, R. (1997). The Fes protein-tyrosine kinase phosphorylates a subset of macrophage proteins that are involved in cell adhesion and cell-cell signaling. Journal of Biological Chemistry 272, 2104–2109CrossRefGoogle ScholarPubMed
Juris, S. J., Rudolph, A. E., Huddler, D., Orth, K., and Dixon, J. E. (2000). A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proceedings of the National Academy of Sciences USA 97, 9431–9436CrossRefGoogle ScholarPubMed
Kaniga, K., Uralil, J., Bliska, J. B., and Galán, J. E. (1996). A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Molecular Microbiology 21, 633–641CrossRefGoogle ScholarPubMed
Kazmierczak, B. I., Jou, T. S., Mostov, K., and Engel, J. N. (2001). RhoGTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cellular Microbiology 3, 85–98CrossRefGoogle Scholar
Kenny, B., DeVinney, R., Stein, M., Reinscheid, D. J., Frey, E. A., and Finlay, B. B. (1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520CrossRefGoogle ScholarPubMed
Klemke, R., Leng, J., Molander, R., Brooks, P., Vuori, K., and Cheresh, D. (1998). CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. Journal of Cell Biology 140, 961–972CrossRefGoogle ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolff, C., Dougan, G., and Frankel, G. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli. Infection and Immunity 57, 2166–2176Google Scholar
Koornhof, H. J., Smego, R. A. Jr., and Nicol, M. (1999). Yersiniosis. II: The pathogenesis of Yersinia infections. European Journal of Clinical Microbiology and Infectious Disease 18, 87–112CrossRefGoogle ScholarPubMed
Kounnas, M. Z., Morris, R. E., Thompson, M. R., Fitzgerald, D. J., Strickland, D. K., and Salinger, C. B. (1992). The α2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalises Pseudomonas exotoxin A. Journal of Biological Chemistry 267, 12,420–12,423Google Scholar
Krall, R., Schmidt, G., Aktories, K., and Barbieri, J. T. (2000). Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infection and Immunity 68, 6066–6068CrossRefGoogle ScholarPubMed
Krause, M., Sechi, A. S., Konradt, M., Monner, D., Gertler, F. B., and Wehland, J. (2000). Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. Journal of Cell Biology 149, 181–194CrossRefGoogle Scholar
Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galán, J. E., and Aizawa, S. I. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605CrossRefGoogle ScholarPubMed
Kubori, T., Sukhan, A., Aizawa, S. I., and Galán, J. E. (2000). Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proceedings of the National Academy of Sciences USA 97, 10,225–10,230CrossRefGoogle ScholarPubMed
Leung, K. Y., Reisner, B. S., and Straley, S. C. (1990). YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infection and Immunity 58, 3262–3271Google ScholarPubMed
Lian, C. and Pai, C. (1985). Inhibition of human neutrophil chemiluminescence by plasmid-mediated outer membrane proteins of Yersinia enterocolitica. Infection and Immunity 49, 145–151Google ScholarPubMed
Lin, T., Yurochko, A., Kornberg, L., Morris, J., Walker, J., Haskill, S., and Juliano, R. (1994). The role of protein tyrosine phosphorylation in integrin-mediated gene induction in monocytes. Journal of Cell Biology 126, 1585–1593CrossRefGoogle ScholarPubMed
Liu, S., Yahr, T. L., Frank, D. W., and Barbieri, J. T. (1997). Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. Journal of Bacteriology 179, 1609–1613CrossRefGoogle ScholarPubMed
Lloyd, S. A., Norman, M., Rosqvist, R., and Wolf-Watz, H. (2001). Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Molecular Microbiology 39, 520–531CrossRefGoogle Scholar
Magae, J., Nagi, T., Takaku, K., Kataoka, T., Koshino, H., Uramoto, M., and Nagai, K. (1994). Screening for specific inhibitors of phagocytosis of thioglycollate-elicited macrophages. Bioscience Biotechnology and Biochemistry 58, 104–107CrossRefGoogle ScholarPubMed
Mandell, G. L., Bennett, J. E., and Dolin, R. (1995). In Principles and Practise of Infectious Diseases, pp. 1980–2002. New York: Churchill Livingstone
Marches, O., Nougayrede, J. P., Boullier, S., Mainil, J., Charlier, G., Raymond, I., Pohl, P., Boury, M., Rycke, J., Milon, A., and Oswald., E. (2000). Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infection and Immunity 68, 2171–2182CrossRefGoogle ScholarPubMed
Marra, A. and Isberg, R. (1997). Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infection and Immunity 65, 3412–3421Google ScholarPubMed
Mauro, L. and Dixon, J. (1994). ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address’. Trends in Biochemical Sciences 19, 151–155CrossRefGoogle Scholar
McGuffie, E. M., Frank, D. W., Vincent, T. S., and Olson, J. C. (1998). Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infection and Immunity 66, 2607–2613Google ScholarPubMed
Montagna, L. G., Ivanov, M. I., and Bliska, J. B. (2001). Identification of residues in the amino-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. Journal of Biological Chemistry 276, 5005–5011CrossRefGoogle Scholar
Morrissette, N., Gold, E., and Aderem, A. (1999). The macrophage – a cell for all seasons. Trends in Cell Biology 9, 199–201CrossRefGoogle ScholarPubMed
Moulder, J. W. (1991). Interaction of chlamydiae and host cells in vitro. Microbiology Reviews 55, 143–190Google ScholarPubMed
Neyt, C. and Cornelis, G. R. (1999). Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Molecular Microbiology 33, 971–981CrossRefGoogle Scholar
Nhieu, G. T. and Sansonetti, P. J. (1999). Mechanism of Shigella entry into epithelial cells. Current Opinion in Microbiology 2, 51–55CrossRefGoogle ScholarPubMed
Nicas, T. I. and Iglewski, B. H. (1985). The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Canadian Journal of Microbiology 31, 387–392CrossRefGoogle ScholarPubMed
Nilles, M. L., Williams, A. W., Skrzypek, E., and Straley, S. C. (1997). Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low Ca2 + response. Journal of Bacteriology 179, 1307–1316CrossRefGoogle ScholarPubMed
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proceedings of the National Academy of Sciences USA 95, 14057–14059CrossRefGoogle ScholarPubMed
Ochman, H., Sonsini, F. C., Solomon, F., and Groisman, E. A. (1996). Identification of a pathogenicity island required for Salmonella survival in host cells. Proceedings of the National Academy of Sciences USA 93, 7800–7804CrossRefGoogle ScholarPubMed
O'Neill, G. M., Fashena, S. J., and Golemis, E. A. (2000). Integrin signalling: a new Cas(t) of characters enters the stage. Trends in Cell Biology 10, 111–119CrossRefGoogle Scholar
Orth, K., Xu, Z., Mudgett, M. B., Bao, Z. Q., Palmer, L. E., Bliska, J. B., Mangel, W. F., Staskawicz, B., and Dixon, J. E. (2000). Disruption of signalling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597CrossRefGoogle Scholar
Palmer, L. E., Hobbie, S., Galán, J. E., and Bliska, J. B. (1998). YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNFα production and downregulation of the MAP kinases p38 and JNK. Molecular Microbiology 27, 953–965CrossRefGoogle ScholarPubMed
Parsot, C. and Sansonetti, P. (1996). Invasion and the pathogenesis of Shigella infections Current Topics in Microbiology and Immunology 209, 25–42
Pederson, K. J. and Barbieri, J. T. (1998). Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells. Molecular Microbiology 30, 751–759CrossRefGoogle ScholarPubMed
Pederson, K. J., Vallis, A. J., Aktories, K., Frank, D. W., and Barbieri, J. T. (1999). The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Molecular Microbiology 32, 393–401CrossRefGoogle ScholarPubMed
Peitsch, M. C. (1995). Protein modeling by e-mail. Bio/Technology 13, 658–660Google Scholar
Persson, C., Nordfelth, R., Holmström, A., Håkansson, S., Rosqvist, R., and Wolf-Watz, H. (1995). Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Molecular Microbiology 18, 135–150CrossRefGoogle ScholarPubMed
Persson, C., Carballeira, N., Wolf-Watz, H., and Fällman, M. (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. European Molecular Biology Organisation Journal 16, 2307–2318CrossRefGoogle ScholarPubMed
Persson, C., Nordfeldt, R., Andersson, K., Forsberg, Å., Wolf-Watz, H., and Fällman, M. (1999). Localisation of the Yersinia PTPase to focal complexes is an important virulence mechanism. Molecular Microbiology 33, 828–838CrossRefGoogle Scholar
Pettersson, J., Holmström, A., Hill, J., Leary, S., Frithz-Lindsten, E., Euler-Matell, A., Carlsson, E., Titball, R., Forsberg, Å., and Wolf-Watz, H. (1999). The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Molecular Microbiology 32, 961–976CrossRefGoogle ScholarPubMed
Plano, G. V., Day, J. B., and Ferracci, F. (2001). Type III export: new uses for an old pathway. Molecular Microbiology 40, 284–293CrossRefGoogle ScholarPubMed
Polte, T. and Hanks, S. (1995). Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proceedings of the National Academy of Sciences USA 92, 10,678–10,682CrossRefGoogle ScholarPubMed
Rabinovitch, M. (1995). Professional and non-professional phagocytes: an introduction. Trends in Cell Biology 5, 85–87CrossRefGoogle Scholar
Ramaro, N., Gray-Owen, S. D., Backert, S., and Meyer, T. F. (2000). Helicobacter pylori inhibits phagocytosis by professional phagocytes involving the type IV secretion components. Molecular Microbiology 37, 1389–1404CrossRefGoogle Scholar
Rosenshine, I., Duronio, V., and Finlay, B. (1992). Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infection and Immunity 60, 2211–2217Google ScholarPubMed
Rosqvist, R. and Wolf-Watz, H. (1986). Virulence plasmid-associated HeLa cell induced cytotoxicity of Yersinia pseudotuberculosis. Microbial Pathogenesis 1, 229–240CrossRefGoogle ScholarPubMed
Rosqvist, R., Bölin, I., and Wolf-Watz, H. (1988). Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infection and Immunity 56, 2139–2143Google ScholarPubMed
Rosqvist, R., Forsberg, A., Rimpilainen, M., Bergman, T., and Wolf-Watz, H. (1990). The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Molecular Microbiology 4, 657–667CrossRefGoogle ScholarPubMed
Rosqvist, R., Forsberg, A., and Wolf-Watz, H. (1991). Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infection and Immunity 59, 4562–4569Google ScholarPubMed
Rosqvist, R., Magnusson, K., and Wolf-Watz, H. (1994). Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. European Molecular Biology Organisation Journal 13, 964–972Google ScholarPubMed
Rosqvist, R., Håkansson, S., Forsberg, A., and Wolf-Watz, H. (1995). Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. European Molecular Biology Organisation Journal 14, 4187–4195Google ScholarPubMed
Rossier, O., Wengelnik, K., Hahn, K., and Bonas, U. (1999). The Xanthomonas type III system secretes proteins from plant and mammalian pathogens. Proceedings of the National Academy of Sciences USA 96, 9368–9373CrossRefGoogle Scholar
Ruckdeschel, K., Roggenkamp, A., Schubert, S., and Heesemann, J. (1996). Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infection and Immunity 64, 724–733Google ScholarPubMed
Ruckdeschel, K., Machold, I., Roggenkamp, A., Schubert, S., Pierre, J., Zumbihl, R., Liautard, J., Heesemann, J., and Rouot, B. (1997). Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases, extracellular signal-regulated kinase-1/2, p38, and c-Jun NH2-terminal kinase. Correlation with its inhibitory effect on tumor necrosis factor-alpha production. Journal of Biological Chemistry 272, 15,920–15,927CrossRefGoogle ScholarPubMed
Sawa, T., Yahr, T. L., Ohara, M., Kurahashi, K., Gropper, M. A., Wiener-Kronish, J. P., and Frank, D. W. (1999). Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nature Medicine 5, 392–398CrossRefGoogle ScholarPubMed
Scheffzek, K., Reza, M., and Wittinghofer, A. (1998). GTP-ase activating proteins: helping hands complement an active site. Trends in Biochemistry 23, 257–262CrossRefGoogle Scholar
Schesser, K., Frithz-Lindsten, E., and Wolf-Watz, H. (1996). Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. Journal of Bacteriology 178, 7227–7233CrossRefGoogle ScholarPubMed
Schesser, K., Spiik, A.-K., Dukuzumuremyi, J.-M., Neurath, M. F., Pettersson, S., and Wolf-Watz, H. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NFκB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Molecular Microbiology 28, 1067–1079CrossRefGoogle Scholar
Schmidt, G., Sehr, P., Wilm, M., Selzer, J., Mann, M., and Aktories, K. (1997). Gln-63 of Rho is deamidated by Escherichia coli cytotoxic necrotoxing factor-1. Nature 387, 725–729CrossRefGoogle ScholarPubMed
Scidmore, M. A. and Hackstadt, T. (2001). Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Molecular Microbiology 39, 1638–1650CrossRefGoogle ScholarPubMed
Simonet, M., Richard, S., and Berche, P. (1990). Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. Infection and Immunity 58, 841–845Google ScholarPubMed
Skrzypek, E., Cowan, C., Straley, S. C. (1998). Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Molecular Microbiology 30, 1051–1065CrossRefGoogle ScholarPubMed
Sory, M. P. and Cornelis, G. R. (1994). Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Molecular Microbiology 14, 583–594CrossRefGoogle ScholarPubMed
Sory, M., Boland, A., Lambermont, I., and Cornelis, G. R. (1995). Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proceedings of the National Academy of Sciences USA 92, 11,998–12,002CrossRefGoogle ScholarPubMed
Stebbins, E. C., and Galán, J. E. (2000). Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Molecular Cell 6, 1449–1460CrossRefGoogle ScholarPubMed
Straley, S. C. and Bowmer, W. S. (1986). Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis inclue structural genes for outer membrane proteins. Infection and Immunity 51, 445–454Google Scholar
Subtil, A., Blocker, A., and Dautry-Varsat, A. (2000). Type III secretion system in Chlamydia: identified members and candidates. Microbes and Infection 2, 367–369CrossRefGoogle ScholarPubMed
Subtil, A., Parsot, C., and Dautry-Varsat, A. (2001). Secretion of predicted Inc proteins of Chlamydia pneumoniae by heterologous type III machinery. Molecular Microbiology 39, 792–800CrossRefGoogle ScholarPubMed
Sundin, C., Henriksson, M. L., Hallberg, B., Forsberg, Å., and Frithz-Lindsten, E. (2001). Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cellular Microbiology 3, 237–246CrossRefGoogle Scholar
Tacket, C. O., Sztein, M. B., Losonsky, G., Abe, A., Finlay, B. B., McNamara, B. P., Fantry, G. T., James, S. P., Nataro, J. P., Levine, M. M., and Donnenberg, M. S. (2000). Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infection and Immunity 68, 3689–3695CrossRefGoogle ScholarPubMed
Tjelle, T. E., Lovdal, T., and Berg, T. T. (2000). Phagosome dynamics and function. Bioessays 22, 255–2633.0.CO;2-R>CrossRefGoogle ScholarPubMed
Tonks, N. and Neel, B. (1996). From form to function: signaling by protein tyrosine phosphatases. Cell 87, 365–368CrossRefGoogle ScholarPubMed
Vallance, B. A. and Finlay, B. B. (2000). Exploitation of host cells by enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences USA 97, 8799–8806CrossRefGoogle ScholarPubMed
Vallis, A. J., Finck-Barbancon, V., Yahr, T. L., and Frank, D. W. (1999). Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infection and Immunity 67, 2040–2044Google ScholarPubMed
Aelst, L. and D'Souza-Schorey, C. (1997). Rho GTPases and signalling networks. Genes and Development 11, 2295–2322CrossRefGoogle Scholar
Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H., and Fang, F. C. (2000a). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. Journal of Experimental Medicine 192, 227–236CrossRefGoogle Scholar
Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D. W., Lucia, S. M., Dinauer, M.-C., Mastroeni, P., and Fang, F. C. (2000b). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658CrossRefGoogle Scholar
Vincent, T. S., Fraylick, J. E., McGuffie, E. M., and Olson, J. C. (1999). ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Molecular Microbiology 32, 1054–1064CrossRefGoogle ScholarPubMed
Visser, L., Annema, A., and Furth, R. (1995). Role of Yops in inhibition of phagocytosis and killing of opsonized Yersinia enterocolitica by human granulocytes. Infection and Immunity 63, 2570–2575Google ScholarPubMed
Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H., and Rosqvist, R. (2000). GAP activity of the Yersinia YopE cytotoxin specifically targets the rho pathway: a mechanism for disruption of actin microfilament structure. Molecular Microbiology 36, 737–748CrossRefGoogle Scholar
Wattiau, P. and Cornelis, G. R. (1993). SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Molecular Microbiology 8, 123–131CrossRefGoogle ScholarPubMed
Wattiau, P., Woestyn, S., and Cornelis, G. R. (1996). Customized secretion chaperones in pathogenic bacteria. Molecular Microbiology 20, 255–262CrossRefGoogle ScholarPubMed
Weidow, C. L., Black, D. S., Bliska, J. B., and Bouton, A. H. (2000). CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells. Cellular Microbiology 2, 549–560CrossRefGoogle ScholarPubMed
Woestyn, S., Sory, M. P., Boland, A., Lequenne, O., and Cornelis, G. R. (1996). The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Molecular Microbiology 20, 1261–1271CrossRefGoogle ScholarPubMed
Würtele, M., Wolf, E., Pederson, K., Buchwald, G., Ahmadian, M., Barbieri, J. T., and Wittinghofer, A. (2001). How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Structural Biology 8, 23–26Google ScholarPubMed
Yahr, T. L., Hovey, A. K., Kulich, S. M., and Frank, D. W. (1995). Transcriptional analysis of the Pseudomonas aeruginosa exotoxin S structural gene. Journal of Bacteriology 177, 1169–1178CrossRefGoogle Scholar
Yahr, T. L., Goranson, J., and Frank, D. W. (1996). Exoenzyme S of Pseudomonas aeruginosa secreted by a type III secretion pathway. Molecular Microbiology 22, 991–1003CrossRefGoogle Scholar
Yahr, T. L., Mende-Mueller, L. M., Friese, M. B., and Frank, D. W. (1997). Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. Journal of Bacteriology 179, 7165–7168CrossRefGoogle ScholarPubMed
Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T., and Frank, D. W. (1998). ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proceedings of the National Academy of Sciences USA 95, 13,899–13,904CrossRefGoogle ScholarPubMed
Zhang, Z., Clemens, J., Schubert, H., Stuckey, J., Fischer, M., Hume, D., Saper, M., and Dixon, J. (1992). Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. Journal of Biological Chemistry 267, 23,759–23,766Google ScholarPubMed
Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B., and Galán, J. E. (2001). A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology 39, 248–259CrossRefGoogle ScholarPubMed
Zumbihl, R., Aepfelbacher, M., Andor, A., Jacobi, C. A., Ruckdeschel, K., Rouot, B., and Heesemann, J. (1999). The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. Journal of Biological Chemistry 274, 29,289–29,293CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×