Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-06T10:27:53.745Z Has data issue: false hasContentIssue false

7 - Biofilm Complications of Urinary Tract Devices

Published online by Cambridge University Press:  23 November 2009

Sean P. Gorman
Affiliation:
School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
David S. Jones
Affiliation:
School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

The anatomy of the urinary tract, unfortunately, allows ready access by pathogens to the urethra and beyond when normal defences are breached. The potential for urinary tract infection (UTI) is considerably enhanced by the presence of an indwelling device such as a urethral catheter that provides a conduit to the bladder (Tunney, Jones, and Gorman, 1999). This allows not only the voiding of urine, but also the ingress of microorganisms that colonise the device material and adopt a biofilm growth mode. Such ‘device-related’ infection is a frequent occurrence in the urinary tract, requiring considerable time and resource in its management. It is estimated that over 40 per cent of nosocomial infections are related to the urinary tract (Nickel, Downey, and Costerton, 1989). Despite careful aseptic management, bacteriuria arises in approximately 50 per cent of patients within 10–14 days and in all those undergoing long-term catheterisation for management of urinary retention and incontinence by 28 days. Additional complications such as blocking encrustations, stone formation, pyelonephritis, and bladder cancer may also arise in patients with asymptomatic infection (Gorman and Tunney, 1997). The elderly are particularly prone to urinary device-related infection. Residents of nursing homes undergoing long-term catheterisation are three times more likely to receive antibiotics, be hospitalised, and die within a year than matched non-catheterised residents (Kunin, Chin, and Chambers, 1987).

The obstruction of urine flow in urinary devices by crystalline encrustation is an additional clinical complication.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, C. G., Gorman, S. P., O'Neill, F., McClurg, B., Goldsmith, E. C. and Webb, C. H., (1993). Selective decontamination of the digestive tract (SDD) does not attain sufficient antibiotic concentration in tracheal secretions to prevent the formation of microbial biofilm on endotracheal tubes. Journal of Antimicrobial Chemotherapy, 31, 689–697CrossRefGoogle ScholarPubMed
Adair, C. G., Gorman, S. P., Byers, L. M., Gardner, T. and Jones, D. S. (2000). Confocal laser scanning microscope examination of microbial biofilms. In Handbook of Bacterial Adhesion, eds. Y. H. An and R. J. Friedman, pp. 249–259. New Jersey: Humana PressCrossRef
Adams, J. (1994). Renal stents. Emergency Medical Clinics of North America, 12, 749–758Google ScholarPubMed
Bach, A., Darby, D., Bottiger, B., Bohrer, H., Motsch, J. and Martin, E. (1996). Retention of the antibiotic teicoplanin on a hydromer-coated central venous catheter to prevent bacterial colonisation in postoperative surgical patients. Intensive Care Medicine, 22, 1066–1069CrossRefGoogle Scholar
Baldassarri, L., Gelosia, A., Fiscarelli, E., Donnelli, G., Mignozzi, M. and Rizzoni, G. (1994). Microbial colonisation of implanted silicone and polyurethane catheters. Journal of Materials Science. Materials in Medicine, 5, 601–605CrossRefGoogle Scholar
Bambauer, R., Mestres, P., Schiel, R. and Sioshansi, P. (1995). New surface-treatment technologies for catheters used for extracorporeal detoxification methods. Dialysis and Transplantation, 24, 228Google Scholar
Bambauer, R., Mestres, P., Schiel, R., Klinkmann, J. and Sioshansi, P. (1997). Surface-treated catheters with ion-beam process evaluation in ratsArtificial Organs, 21, 1039–1041CrossRefGoogle ScholarPubMed
Beckett, G., Schep, L. J., Crichton, D. and Jones, D. S. (1997). Chlorhexidine sorption into and release from dental prosthetic biomaterials. Journal of Pharmacy and Pharmacology, 49(S4), 135Google Scholar
Bilbruck, J., Hanlon, G. W. and Martin, G. P. (1993). The effect of polyHEMA coating on the adhesion of bacteria to polymer monofilaments. International Journal of Pharmaceutics, 99, 293–301CrossRefGoogle Scholar
Bonner, M., Keane, P. F. and Gorman, S. P. (1993). Characterisation and antibiotic sensitivities of isolates from ureteral stent biofilm. Journal of Pharmacy and Pharmacology, 45, 1445Google Scholar
Bonner, M. C., Tunney, M. M., Jones, D. S. and Gorman, S. P. (1997). Factors affecting in vitro adherence of ureteral stent biofilm isolates to polyurethane. International Journal of Pharmaceutics, 151, 201–207CrossRefGoogle Scholar
Bridgett, M. J., Davies, M. C. and Denyer, S. P. (1992). Control of Staphlococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials, 13, 411–416CrossRefGoogle Scholar
Brown, A. F., Jones, D. S. and Woolfson, A. D. (1998). Effect of hexetidine and triclosan on the curing and mechanical properties of silicone elastomer. Journal of Pharmacy and Pharmacology, 50, 105CrossRefGoogle Scholar
Bryers, J. D. and Hendricks, S. (1997). Bacterial infection of biomaterials – experimental protocol for in vitro adhesion studies. Annals of the New York Academy of Sciences, 831, 127–137CrossRefGoogle ScholarPubMed
Choong, S., Wood, S., Fry, C. and Whitfield, H. (2001). Catheter-associated urinary tract infection and encrustation. International Journal of Antimicrobial Agents, 17, 305–310CrossRefGoogle ScholarPubMed
Chronos, N. A. F., Robinson, K. A., Kelly, A. B., Taylor, A., Yianni, J., King, S. B., Harker, L. A. and Hanson, R. (1995). Thromboresistant phosphorylcholine coating for coronary stents. Circulation, 92, I–685Google Scholar
Clapham, L, Article, R. J. C.Nickel, J. C. and Downey, J. (1990). The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. Journal of Crystal Growth, 104, 475–484CrossRefGoogle Scholar
Cormio, L., Vuopio-Varkila, J., Siitonen, A., Talja, M. and Ruutu, M. (1995). Biocompatibility of various indwelling double J stents in vivo and in vivo. Scandinavian Journal of Urology and Nephrology, 30, 19–24CrossRefGoogle Scholar
Cormio, L., Forgia, P., Forgia, D., Siitonen, A. and Ruutu, M. (1997). Is it possible to prevent bacterial adhesion onto ureteric stents? Urological Research, 25, 213–216CrossRefGoogle ScholarPubMed
Costerton, J. W., Khoury, A. E., Ward, K. H. and Anwar, H. (1993). Practical measures to control device-related bacterial infections. International Journal of Artificial Organs, 16, 765–770CrossRefGoogle ScholarPubMed
Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11, 217–221CrossRefGoogle Scholar
Cox, A. J. and Hukins, D. W. L. (1989). Morphology of mineral deposits on encrusted urinary catheters investigating by scanning electron microscopy. Journal of Urology, 142, 1347–1350CrossRefGoogle Scholar
Cox, A. J., Hukins, D. W. L. and Sutton, T. M. (1989). Infection of catheterised patients: bacterial colonisation of encrusted foley catheters shown by scanning electron microscopy. Urological Research, 17, 349–352CrossRefGoogle ScholarPubMed
Darouiche, R. O., Hampel, O. Z., Boone, T. B. and Raad, I. I. (1997). Antimicrobial activity and durability of a novel antimicrobial-impregnated bladder catheter. International Journal of Antimicrobial Agents, 8, 243–247CrossRefGoogle ScholarPubMed
Darouiche, R. O., Raad, I. M., Heard, S. O., Thornby, J. I., Wenker, O. C., Gabrielli, A., Berg, J., Khardori, N., Hanna, H., Hachem, R., Harris, R. L. and Mayhall, G. (1999). A comparison of two antimicrobial-impregnated central venous catheters. New England Journal of Medicine, 340, 1–8CrossRefGoogle ScholarPubMed
Denyer, S. P., Hanlon, G. W., Davies, M. C. and Gorman, S. P. (1993). Antimicrobial and other methods for controlling microbial adhesion in infection. In Microbial Biofilms: Formation and Control, eds. S. P. Denyer, S. P. Gorman and M. Sussman, pp. 147–165. Oxford: Blackwell Scientific Publications
Desai, N. P., Hossainy, S. F. and Hubbell, J. A. (1992). Surface-immobilised polyethylene oxide for bacterial repellence. Biomaterials, 13, 417–420CrossRefGoogle Scholar
Djokic, J., Jones, D. S. and Gorman, S. P. (1998). Development of a novel polymer coating for urinary medical devices: assessment of biodegradation and resistance to encrustation. Journal of Pharmacy and Pharmacology, 50, 172CrossRefGoogle Scholar
Djokic, J., Jones, D. S., Gorman, S. P. and McGrath, S. (1999). Assessment of resistance of poly(-caprolactone) films, impregnated with povidone-iodone, to Escherichia coli adherence. Journal of Pharmacy and Pharmacology, 51, 33Google Scholar
Dumanski, A. J., Hedelin, H., Edin-Liljegren, A., Beauchemin, D. and McLean, R. (1994). Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectous urinary calculi. Infection and Immunity, 62, 2998–3003Google Scholar
Dunkirk, S. G., Gregg, S. L., Duran, L. W., Monsfiels, J. D., Haapala, J. E.. (1991). Photochemical coatings for the prevention of bacterial colonisation. Journal of Biomaterials Applications, 6, 131–155CrossRefGoogle Scholar
Elves, A. W. S. and Feneley, R. C. L. (1997). Long-term uretheral catheterisation and urine biomaterial interferance. British Journal of Urology, 80, 1–5CrossRefGoogle Scholar
Fallgren, C., Utt, M., Petersson, A. C., Ljungh, A. and Wadstrom, T. (1998). In vitro anti-staphylococcal activity of heparinized biomaterials bonded with combinations of rifampicin. Zentralblatt fur Bakteriologie, 287, 19–31CrossRefGoogle ScholarPubMed
Farber, B. F. and Wolff, A. G. (1993). Salicylic acid prevents the adherence of bacteria and yeast to silastic catheters. Journal of Biomedical Materials Research, 27, 599–602CrossRefGoogle ScholarPubMed
Fuqua, C. and Greenberg, E. P. (1998). Self-perception in bacteria: quorum sensing with acylated homoserine lactones. Current Opinion in Microbiology, 1, 183–189CrossRefGoogle ScholarPubMed
Gabriel, M. M., Mayo, M. S., May, L. L., Simmons, R. B. and Ahearn, D. G. (1996). In vitro evaluation of the efficacy of a silver-coated catheter. Current Microbiology, 33, 1–5CrossRefGoogle ScholarPubMed
Gilbert, P., Evans, D. J. and Brown, M. R. W. (1993). Formation and dispersal of bacterial biofilms in vivo and in situ. Journal of Applied Bacteriology, 74, S67–S78CrossRefGoogle ScholarPubMed
GoeauBrissonniere, O., Lef lon, V., Letort, M. and Nicolas, M. H. (1999). Resistance of antibiotic bonded gelatin coated polymer meshes to Staphylococcus aureus in a rabbit subcutaneous pouch model. Biomaterials, 20, 229–232CrossRefGoogle Scholar
Golomb, G. and Shpigelman, A. (1991). Prevention of bacterial colonisation on polyurethane in vitro by incorporated antibacterial agent. Journal of Biomedical Material Research, 25, 937–952CrossRefGoogle Scholar
Gorman, S. P. (1991). Microbial adherence and biofilm production. In Mechanisms of Action of Chemical Biocides, eds. S. P. Denyer and W. B. Hugo, pp. 271–295. Oxford: Blackwell Scientific Publications
Gorman, S. P., McCafferty, D. F., Woolfson, A. D. and Jones, D. S. (1987). A comparative study of the microbial anti-adherence capacities of three antimicrobial agents. Journal of Clinical Pharmacy and Therapeutics, 12, 393–399CrossRefGoogle ScholarPubMed
Gorman, S. P., Woolfson, A. D. and McCafferty, D. F. (1991a). Elemental analysis of latex and polymer-coated urinary catheter encrustation by a novel electron probe and digimap technique. Proceedings of the 10th Pharmaceutical Technology Conference, Bologna, Italy, 2, 649–651Google Scholar
Gorman, S. P., Woolfson, A. D. and McCafferty, D. F. (1991b). Microbial adherence andbiofilm formation on latex and polymer-coated urinary catheters: role of hydrophobicity. Proceedings of 10th Pharmaceutical Technology Conference, Bologna, Italy, 2, 661–663Google Scholar
Gorman, S. P., Adair, C. G., O'Neill, F., Goldsmith, E. C. and Webb, C. H. (1993a). Influence of selective decontamination of the digestive tract on microbial biofilm formation on endotracheal tubes from artificially ventilated patients. European Journal of Clinical Microbiology and Infectious Diseases, 12, 9–17CrossRefGoogle Scholar
Gorman, S. P., Mawhinney, W. M., Adair, C. G. and Issouckis, M. (1993b). Confocal scanning laser microscopy of CAPD catheter surface microrugosity in relation to recurrent peritonitis. Journal of Medical Microbiology, 38, 411–417CrossRefGoogle Scholar
Gorman, S. P., Mawhinney, W. M. and Adair, C. G. (1993c). The influence of a protein-conditioning film and cell surface hydrophobicity on bacterial adherence to silicone and polyurethane CAPD catheters. Proceedings of the 12th Pharmaceutical Technology Conference, Copenhagen, Denmark, 2, 465–468Google Scholar
Gorman, S. P., Adair, C. G. and Mawhinney, W. M. (1994). Incidence, nature and antibiotic resistance of CAPD catheter biofilm in relation to peritonitis. Epidemiology and Infection, 112, 551–559CrossRefGoogle Scholar
Gorman, S. P. and Tunney, M. M. (1997). Assessment of encrustation behaviour on urinary tract biomaterials. Journal of Biomedical Material Research, 12, 136–166Google ScholarPubMed
Gorman, S. P., Tunney, M. M., Keane, P. F., van Bladel, K. and Bley, B. (1998). Characterisation and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial. Journal of Biomedical Material Research, 39, 642–6503.0.CO;2-7>CrossRefGoogle Scholar
Gorman, S. P., McGovern, J. G., Woolfson, A. D., Adair, C. G. and Jones, D. S. (2001). The concomitant development of poly(vinylchloride)-related biofilm and antimicrobial resistance in relation to ventilator-associated pneumonia. Biomaterials, 22, 2741–2747CrossRefGoogle Scholar
Greenfeld, J. I., Sampath, L., Popilskis, S. J. and Brunnert, S. R. (1995). Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine-impregnated central venous catheters implanted in swine. Critical Care Medicine, 23, 894–900CrossRefGoogle ScholarPubMed
Griffith, D. P., Musher, D. M. and Itin, C. (1976). Urease-the primary cause of infection-induced urinary stones. Investigative Urology, 13, 346–350Google Scholar
Griffith, D. P. (1978). Struvite stones. Kidney International, 13, 372–382CrossRefGoogle ScholarPubMed
Gristina, A. G. (1987). Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 237, 1588–1595CrossRefGoogle ScholarPubMed
Hardhammer, P. A., Beusekom, H. M. M., Emanuelsson, H. U., Hofma, S. H., Albertsson, P. A., Verdouw, P. D., Boersma, E., Serruys, P. W. and Giessen, W. J. (1996). Reduction in thrombotic events with heparin-coated Palmaz–Schatz stents in normal porcine coronary arteries. Circulation, 93, 423–430CrossRefGoogle Scholar
Harvey, R. A., Tesoriero, J. V. and Greco, R. S. (1984). Non-covalent bonding of penicillin and cefazolin to Dacron. American Journal of Surgery, 147, 205–209CrossRefGoogle Scholar
Heard, S. O., Wagle, W., Vijayakumar, E., McLean, S., Brueggemann, A., Napolitanho, L. M., Edwards, P., O'Connell, F. M., Puyana, J. C. and Doern, G. V. (1998). Influence of triple-lumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Archives of Internal Medicine, 158, 81–87CrossRefGoogle ScholarPubMed
Hustinx, W. N. M. and Verbrugh, H. A. (1994). Catheter associated urinary tract infections: epidemiological, preventive and therapeuric considerations. International Journal of Antimicroial Agents, 4, 117–123CrossRefGoogle Scholar
Ishihara, K., Aragaki, R., Ueda, T., Watenabe, A. and Nakabayashi, N. (1990). Reduced thrombogenicity of polymers having phospholipids polar group. Journal of Biomedical Materials Research, 24, 1069–1077CrossRefGoogle Scholar
Jansen, B., Schumacher-Perdreau, F., Peters, G. and Pulverer, G. (1989). New aspects in the pathogenesis and prevention of polymer associated foreign body infections caused by coagulase-negative staphylococci. Journal of Investigative Surgery, 2, 361–380CrossRefGoogle ScholarPubMed
Jansen, B. and Peters, G. (1991). Modern strategies in the prevention of polymer-associated infections. Journal of Hospital Infection, 19, 83–88CrossRefGoogle ScholarPubMed
Jansen, B., Jansen, S., Peters, G. and Pulverer, G. (1992a). In vitro efficacy of a central venous catheter (Hydrocath) loaded with teicoplanin to prevent bacterial colonization. Journal of Hospital Infection, 22, 93–107CrossRefGoogle Scholar
Jansen, B., Kristinsson, K. G., Jansen, J., Peters, G. and Pulverer, G. (1992b). In vitro efficacy of a central venous catheter complexed with iodine to prevent bacterial colonisation. Journal of Antimicrobial Chemotherapy, 30, 135–139CrossRefGoogle Scholar
Jansen, B., Goodman, L. P. and Ruiten, D. (1993). Bacterial adherence to hydrophilic polymer-coated polyurethane stents. Gastrointestinal Endoscopy, 39, 670–673CrossRefGoogle ScholarPubMed
John, S. F., Hillier, V. F., Handley, P. S. and Derrick, M. R. (1995). Adhesion of Staphylococci to polyurethane and hydrogel-coated polyurethane catheters assayed by an improved radiolabelling technique. Journal of Medical Microbiology, 43, 133–140CrossRefGoogle ScholarPubMed
Johnson, J. R., Delavari, P. and Azar, M. (1999). Activities of a nitrofurazone-containing urinary catheters and a silver hydrogel catheter against multidrug resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrobial Agents and Chemotherapy, 43, 2990–2995Google Scholar
Jones, C. R., Handley, P. S., Robson, G. D., Eastwood, I. M. and Greenhalgh, M. (1996). Biocides incorporated into plasticised polyvinyl chloride reduce adhesion of Pseudomonas fluorescens B1146 and substratum hydrophobicity. Journal of Applied Bacteriology, 81, 553–560CrossRefGoogle Scholar
Jones, D. S., Gorman, S. P., McCafferty, D. F. and Woolfson, A. D. (1991). The effects of three non-antibiotic antimicrobial agents on the surface hydrophobicity of certain micro-organisms evaluated by different methods. Journal of Applied Bacteriology, 71, 218–227CrossRefGoogle ScholarPubMed
Jones, D. S., Garvin, C. P. and Gorman, S. P., (2001a). Design of a simulated urethra model for the quantitative assessment of urinary catheter lubricity. Journal of Matererials Science. Materials in Medicine, 12, 15–21CrossRefGoogle Scholar
Jones, D. S., McGovern, J. G., Adair, C. G., Woolfson, A. D. and Gorman, S. P. (2001b). Conditioning film and environmental effects on the adherence of Candida spp. to silicone and poly(vinylchloride) biomaterials. Journal of Materials Science. Materials in Medicine, 12, 399–405CrossRefGoogle Scholar
Jones, D. S., McGovern, J. G., Woolfson, A. D., Adair, C. G. and Gorman, S. P. (2002). Physicochemical characterisation of hexetidine impregnated endotracheal tube poly(vinylchloride) and resistance to adherence of respiratory bacterial pathogens. Pharmaceutical Research, 19, 818–824CrossRefGoogle Scholar
Keane, P. F., Bonner, M., Johnston, S. R., Zafar, A. and Gorman, S. P. (1994). Characterisation of biofilm and encrustation on ureteric stents in vivo. British Journal of Urology, 73, 687–691CrossRefGoogle Scholar
Kohnen, W. and Jansen, B. (1995). Polymer material for the prevention of catheter-related infections. Zentralblatt fur Bakteriologie, 283, 175–186CrossRefGoogle ScholarPubMed
Kohnen, W., Schaper, J., Klien, O., Tieke, B. and Jansen, B. (1998). A silicone ventricular catheter coated with a combination of rifampin and trimethoprim for the prevention of catheter-related infections. Zentralblatt fur Bakteriologie, 287, 147–156CrossRefGoogle ScholarPubMed
Kristinsson, K. G., Jansen, B., Treitz, U., Schumacher-Perdreau, F., Peters, G. and Pulverer, G., (1991). Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. Journal of Biomaterials Applications, 5, 173–184CrossRefGoogle ScholarPubMed
Kunin, C. M., Chin, Q. F. and Chambers, S. (1987). Morbidity and mortality associated with indwelling urinary catheters in elderly patients in a nursing home – confounding due to the presence of associated diseases. Journal of the American Geriatric Society, 35, 1001–1006CrossRefGoogle Scholar
Lachapelle, K., Graham, A. M. and Symes, J. F. (1994). Antibacterial activity, antibiotic retention and infection resistance of a rifampin-impregnated gelatin sealed Dacron graft. Journal of Vascular Surgery, 19, 675–682CrossRefGoogle ScholarPubMed
Liedberg, H., and Lundeberg, T. (1989). Silver coating of urinary catheters prevents adherence and growth of Pseudomonas aeruginosa. Urolological Research, 17, 357–358CrossRefGoogle ScholarPubMed
Liedl, B. and Hofstetter, A. (2000). Pathogenese und verhinderung katheterassoziierter harnwegsinfektionen. Urologie B, 40, 233–237CrossRefGoogle Scholar
Liedl, B. (2001). Catheter-associated urinary tract infections. Current Opinion in Urology, 11, 75–79CrossRefGoogle ScholarPubMed
McAllister, E. W., Carey, L. C., Brady, P. G. and Heller, R. (1993). The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointestinal Endoscopy, 39, 422–425CrossRefGoogle ScholarPubMed
McLean, R. J. C., Downey, J., Clapham, L. and Nickel, J. C. (1990). A simple technique for studying struvite crystal growth in vitro. Urological Research, 18, 39–43CrossRefGoogle ScholarPubMed
McLean, R. J. C., Lawrence, J. R., Korber, D. R. and Caldwell, D. E. (1991a). Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. Journal of Urology, 146, 1138–1142CrossRefGoogle Scholar
McLean, R. J. C., Downey, J., Clapham, L., Wilson, J. W. L. and Nickel, J. C. (1991b). Pyrophosphate inhibition of Proteus mirabilis induced struvite crystallization in vitro. Clinica Chimica Acta, 200, 107–118CrossRefGoogle Scholar
McGovern, J. G., Garvin, C. P., Jones, D. S., Woolfson, A. D. and Gorman, S. P. (1997). Modification of biomaterial surface characteristics by body fluids in vitro. International Journal of Pharmaceutics, 149, 251–254CrossRefGoogle Scholar
Maki, D. G., Stolz, S. M., Wheeler, S. and Mermel, L. A. (1997). Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. Annals of Internal Medicine, 127, 257–266CrossRefGoogle ScholarPubMed
Mobley, H. L. T. and Warren, J. W. (1987). Urease-positive bacteriuria and obstruction of long-term urinary catheter. Journal of Clinical Microbiology, 25, 2216–2217Google Scholar
Monson, T. and Kunin, C. M. (1974). Evaluation of a polymer-coated indwelling catheter in prevention of infection. Journal of Urology, 111, 220–222CrossRefGoogle ScholarPubMed
Morris, N. S. and Stickler, D. J. (1998). Encrustation of indwelling uretheral catheters by Proteus mirabilis biofilms growing in human urine. Journal of Hospital Infection, 39, 227–234CrossRefGoogle Scholar
Morris, N. S., Stickler, D. J. and McClean, R. J. C. (1999). The development of bacterial biofilms on indwelling urethral catheters. World Journal of Urology, 17, 245–350CrossRefGoogle ScholarPubMed
Multanen, M., Talja, M., Hallanvuo, S., Siitonen, A., Välimaa, T., Tammela, T. L. J., Seppälä, J. and Törmälä, P. (2000). Bacterial adherence to ofloxacin-blended polylactone-coated self-reinforced l-lactic acid polymer urological stents. BJU International, 86, 966–969CrossRefGoogle ScholarPubMed
Nickel, J. C., Grant, S. K. and Costerton, J. W. (1985). Catheter-associated bacteriuria. An experimental study. Urology, 24, 369–375CrossRefGoogle Scholar
Nickel, J. C., Downey, J. and Costerton, J. W. (1989). Ultrastructural study of microbiologic colonisation of urinary catheters. Urology, 34, 284–291CrossRefGoogle Scholar
Nickel, J. C., Downey, J. and Costerton, J. W. (1991). Movement of Pseudomonas aeruginosa along catheter surfaces. A mechanism in the pathogenesis of catheter-associated infection. Urology, 39, 93–98Google Scholar
Nickel, J. C., Downey, J. and Costerton, J. W. (1992). Movement of Pseudomonas aeruginosa along catheter surfaces. A mechanism in pathogenesis of catheter-associated infection. Urology, 39, 93–98Google ScholarPubMed
Nickel, J. C., Costerton, J. W., McLean, R. J. C. and Olson, M., (1994). Bacterial biofilms: influence on the pathogenesis, diagnosis and treatment of urinary tract infections. Journal of Antimicrobial Chemotherapy, 33, 31–41CrossRefGoogle ScholarPubMed
Pemberton, L. B., Ross, V., Cuddy, P., Kremer, H., Fessler, T. and McGurk, E. (1996). No difference in catheter sepsis between standard and antiseptic central venous catheters. Archives of Surgery, 131, 986–989CrossRefGoogle ScholarPubMed
Raad, I., Darouiche, R., Hachem, R., Mansouri, N. and Bodey, G. P. (1996). The broad-spectrum activity of catheters coated with minocycline and rifampicin. Journal of Infectious Diseases, 173, 418–424CrossRefGoogle Scholar
Raad, I., Buzaid, A., Rhyne, J., Hachem, R., Darouiche, R.. (1997a). Minocycline and ethylenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clinical Infectious Diseases, 25, 149–151CrossRefGoogle Scholar
Raad, I., Darouiche, R., Dupuis, J., Abi-Said, D., Gabrielli, A., Hachem, R., Wall, M., Harris, R., Jones, J., Buzaid, A., Robertson, C., Sheaq, S., Curling, P., Burke, T. and Ericsson, C., (1997b). Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonisation and bloodstream infections: a randomized, double-blind trial. Annals of Internal Medicine, 127, 267–274CrossRefGoogle Scholar
Raad, I. I., Darouiche, R. O., Hachem, R., AbiSaid, D., Safar, H., Darnule, T., Mansouri, M. and Morck, D. (1998). Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. Critical Care Medicine, 26, 219–224CrossRefGoogle ScholarPubMed
Rad, A. Y., Ayhan, H. and Piskin, E. (1998). Adhesion of different bacterial strains to low-temperature plasma treated biomedical silicon catheter surfaces. Journal of Bioactive and Compatible Polymers, 13, 81–101CrossRefGoogle Scholar
Ramsay, J. W. A., Gernham, A. J., Mulhall, A. B.. (1999). Biofilms, bacteria and bladder catheters. British Journal of Urology, 64, 395–398CrossRefGoogle Scholar
Reid, G. (1997). Microbial adhesion to biosurfaces. Current Opinion in Colloid and Interface Science, 2, 513–516CrossRefGoogle Scholar
Reid, G. (1999). Biofilms in infectious disease and on medical devices. International Journal of Antimicrobial Agents, 11, 223–226CrossRefGoogle ScholarPubMed
Reid, G., Tieszer, C., Foerch, R., Busscher, H. I., Khoury, A. E. and Mei, H. C. (1992a). The binding of urinary components and uropathogens to a silicone latex urethral catheter. Cells and Materials, 2, 253–260Google Scholar
Reid, G., Khoury, A. E., Neumann, A. W. and Bruce, A. W., (1992b). Components involved in biomaterial-related infections. American Urology Association. Updates Service, Lesson 18, 11, 138–143Google Scholar
Reid, G., Lam, D., Policova, Z. and Neumann, A. W. (1993). Adhesion of two uropathogens to silicone and lubricious catheters: influence of pH, urea and creatinine. Journal of Materials Science. Materials in Medicine, 4, 17–22CrossRefGoogle Scholar
Reid, G., Davidson, R. and Denstedt, J. D. (1994a). Analyses of conditioning film deposition onto ureteral stents. Surface and Interface Analysis, 21, 581–586CrossRefGoogle Scholar
Reid, G., Sharma, S., Advikolanu, K. and Tieszer, C. (1994b). Effects of ciprofloxacin, norfloxacin and ofloxacin on in vitro adhesion and survival of Pseudomonas aeruginosa AK. 1 on urinary catheters. Antimicrobial Agents and Chemotherapy, 38, 1490–1495CrossRefGoogle Scholar
Riley, D. K., Classen, D. C., Stevens, L. E. and Burke, J. P. (1995). A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. American Journal of Medicine, 98, 349–356CrossRefGoogle ScholarPubMed
Santin, M., Motta, A., Denyer, S. P. and Cannas, M. (1999). Effect of the urine conditioning film on ureteral stent encrustation and characterisation of its protein composition. Biomaterials, 20, 1245–1251CrossRefGoogle Scholar
Schierholz, J. M., Jansen, B., Jaenicke, L. and Pulverer, G. (1994). In vitro efficacy of an antibiotic-releasing silicone ventricle catheter to prevent shunt infection. Biomaterials, 15, 996–1000CrossRefGoogle ScholarPubMed
Schierholz, J. M., Steinhouser, H., Rump, A. F. E., Berkels, R. and Pulverer, G. (1997). Controlled release of antibiotics from biomedical polyurethanes. Biomaterials, 18, 839–844CrossRefGoogle ScholarPubMed
Sherertz, R. J. (1997). Selected thoughts on the development of new medical devices. Current Opinion in Infectious Diseases, 10, 330–334CrossRefGoogle Scholar
Sioshansi, P. and Tobin, E. J. (1996). Surface-treatment of biomaterials by ion-beam processes. Surface and Coatings Technology, 83, 175–182CrossRefGoogle Scholar
Stickler, D. J. (1996). Bacterial biofilms and the encrustation of urethral catheters. Biofouling, 9, 293–305CrossRefGoogle Scholar
Stickler, D. J. (2000). Biomaterials to prevent nosocomial infections: is silver the gold standard?. Current Opinion in Infectious Diseases, 13, 389–393CrossRefGoogle ScholarPubMed
Stickler, D. J., King, J., Nettleton, J. and Winters, C. (1993a). The structure of urinary catheters encrusting bacterial biofilms. Cells and Materials, 3, 315–320Google Scholar
Stickler, D., Ganderton, L., King, J., Nettleton, J. and Winters, C. (1993b). Proteus mirabilis biofilms and the encrustation of uretheral stents. Urological Research, 21, 407–411CrossRefGoogle Scholar
Stickler, D. J., Howe, N. S. and Winters, C. (1994). Bacterial biofilm growth on ciprofloxacin treated urethral catheters. Cells and Materials, 4, 387–398Google Scholar
Stickler, D. J., Morris, N. S. and Williams, T. J. (1996). An assessment of the ability of a silver-releasing device to prevent bacterial-contamination of urethral catheter drainage systems. British Journal of Urology, 78, 579–588CrossRefGoogle ScholarPubMed
Stickler, D. J., Morris, N. S., McClean, R. J. C. and Fuqua, C. (1998). Biofilms on indwelling urinary catheters produce quorum-sensing signal molecules in situ and in vitro. Applied and Environmental Microbiology, 64, 3486–3490Google ScholarPubMed
Stickler, D. J. and Hughes, G. (1999). Ability of Proteus mirabilis to swarm over urethral catheters. European Journal of Clinical Microbiology and Infectious Diseases, 18, 206–208CrossRefGoogle ScholarPubMed
Talja, M., Virtanen, J. and Andersson, L. C. (1986). Toxic catheter and diminished uretheral blood circulation in the induction of urethral strictures. European Urology, 12, 340–345CrossRefGoogle Scholar
Tebbs, S. E., Sawyer, A. and Elliott, T. S. (1994). Influence of surface morphology on in vitro bacterial adherence to central venous catheters. British Journal of Anaesthesia, 72, 587–591CrossRefGoogle ScholarPubMed
Tunney, M. M., Gorman, S. P. and Patrick, S. (1996a). Infection associated with medical devices. Reviews in Medical Microbiology, 74, 195–205CrossRefGoogle Scholar
Tunney, M. M., Bonner, M. C., Keane, P. F. and Gorman, S. P. (1996b). Development of a model for assessment of biomaterial encrustation in the upper urinary tract. Biomaterials, 17, 1025–1029CrossRefGoogle Scholar
Tunney, M. M., Keane, P. F., Jones, D. S. and Gorman, S. P. (1996c). Comparative assessment of ureteral stent biomaterial encrustation. Biomaterials, 17, 1541–1546CrossRefGoogle Scholar
Tunney, M. M., Keane, P. F. and Gorman, S. P. (1997a). Assessment of urinary tract biomaterial encrustation using a modified Robbins device continuous flow model. Journal of Biomedical Materials Research, 38, 87–933.0.CO;2-C>CrossRefGoogle Scholar
Tunney, M. M., Jones, D. S. and Gorman, S. P. (1997b). Methacrylate polymers and copolymers as urinary tract biomaterials: resistance to encrustation and microbial adhesion. International Journal of Pharmaceutics, 151, 121–126CrossRefGoogle Scholar
Tunney, M. M., Jones, D. S. and Gorman, S. P. (1999). Biofilm and biofilm-related encrustation of urinary tract devices. In Methods in Enzymology, ed. R. Doyle, pp. 558–565. San Diego, CA: Academic PressCrossRef
Loosdrecht, M. C. M., Lyklema, J., Norde, W. and Zehnder, A. J. B. (1990). Influence of interfaces on microbal activity. Microbiological Reviews, 54, 75–87Google Scholar
Wassall, M. A., Santin, M., Isalberti, C., Cannas, M. and Denyer, S. P. (1997). Adhesion of bacteria to stainless steel and silver-coated orthopaedic external fixation pins. Journal of Biomedical Materials Research, 36, 325–3303.0.CO;2-G>CrossRefGoogle ScholarPubMed
Whalen, R. L., Cai, C., Thompson, L. M., Sarrasin, M. J.. (1997). An infection inhibiting urinary catheter material. ASAIO Journal, 43, M843–M847CrossRefGoogle ScholarPubMed
Wollin, T. A., Tieszer, C., Riddell, J. V., Denstedt, J. D., and Reid, G. (1998). Bacterial biofilm formation, encrustation, and antibiotic adsorption to ureteral stents indwelling in humans. Journal of Endourology, 12, 101–111CrossRefGoogle ScholarPubMed
Woodyard, L. L., Bowersock, T. L., Turek, J. J., McCabe, G. P. and Deford, J. A. (1996). Comparison of the effects of several silver-treated intravenous catheters on the survival of staphylococci in suspension and their adhesion to the catheter surface. Journal of Controlled Release, 40, 23–30CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×