Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-08T02:42:21.396Z Has data issue: false hasContentIssue false

13 - Pseudomonas aeruginosa Biofilms in Lung Infections

Published online by Cambridge University Press:  23 November 2009

Kimberly K. Jefferson
Affiliation:
Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Gerald B. Pier
Affiliation:
Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

In 1962, Nobel Laureate Frank MacFarlane Burnet wrote ‘one can think of the middle of the twentieth century as the end of one of the most important social revolutions in history, the virtual elimination of the infectious diseases as a significant factor in social life’ (Burnet, 1962). Indeed, advances in medical technology have come forth at an impressive rate. However, pathogens have adapted to and even taken advantage of the altered host environments created by modern therapies and medical devices, and new forms of microbial infections continue to challenge and confound modern medical technology. Development of microbial resistance to antibiotics and biocide disinfectants represent well-known examples of microbial adaptation. The increasing frequency with which indwelling medical devices, including intravenous catheters, replacement heart valves, prosthetic hip and knee joints, and artificial hearts, are being used represents a tremendous advancement in modern medicine, but it has also afforded certain microbes with a new opportunity to breach the primary host defences and initiate a focal point of infection. These devices penetrate protective dermal or mucosal layers and provide many pathogenic organisms with a surface on which they can attach and grow. The mode of growth that occurs, that of a community of interconnected and communicating cells known as a biofilm, allows a high density cluster of cells in various physiologic states to coexist.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinbi, H. T., Epaud, R., Bhatt, H. and Weaver, T. E. (2000). Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. Journal of Immunology, 165, 5760–5766CrossRefGoogle ScholarPubMed
Andersen, D. D. (1938). Cystic fibrosis of the pancreas and its relation to celiac disease. American Journal of Diseases of Children, 56, 344–399CrossRefGoogle Scholar
Barasch, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D. and al-Awqati, Q. (1991). Defective acidification of intracellular organelles in cystic fibrosis. Nature, 352, 70–73CrossRefGoogle ScholarPubMed
Bayer, A. S., Park, S., Ramos, M. C., Nast, C. C., Eftekhar, F. and Schiller, N. L. (1992). Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infection and Immunity, 60, 3979–3985Google ScholarPubMed
Beaulac, C., Clement-Major, S., Hawari, J. and Lagace, J. (1996). Eradication of mucoid Pseudomonas aeruginosa with fluid liposome-encapsulated tobramycin in an animal model of chronic pulmonary infection. Antimicrobial Agents and Chemotherapy, 40, 665–669Google Scholar
Bisgaard, H., Pedersen, S. S., Nielsen, K. G., Skov, M., Laursen, E. M., Kronborg, G., Reimert, C. M., Hoiby, N. and Koch, C. (1997). Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Pseudomonas aeruginosa infection. American Journal of Respiratory and Critical Care Medicine, 156, 1190–1196CrossRefGoogle Scholar
Boucher, J. C., Yu, H., Mudd, M. H. and Deretic, V. (1997). Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infection and Immunity, 65, 3838–3846Google Scholar
Burnet, M. (1962). Natural History of Infectious Disease. Cambridge: Cambridge University Press
Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O'Riordan, C. R. and Smith, A. E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell, 63, 827–834CrossRefGoogle ScholarPubMed
Chillon, M., Casals, T., Mercier, B., Bassas, L., Lissens, W., Silber, S., Romey, M. C., Ruiz-Romero, J., Verlingue, C. and Claustres, M. (1995). Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. New England Journal of Medicine, 332, 1475–1480CrossRefGoogle ScholarPubMed
Ciofu, O., Giwercman, B., Pedersen, S. S. and Hoiby, N. (1994). Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Centre. Apmis, 102, 674–680CrossRefGoogle Scholar
Costerton, J. W. (1984). The etiology and persistence of cryptic bacterial infections: a hypothesis. Reviews of Infectious Diseases, 6, S608–S616CrossRefGoogle ScholarPubMed
Costerton, J. W., Lam, J., Lam, K. and Chan, R. (1983). The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Reviews of Infectious Diseases, 5, S867–S873CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318–1322CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298CrossRefGoogle ScholarPubMed
Demko, C. A., Byard, P. J. and Davis, P. B. (1995). Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. Journal of Clinical Epidemiology, 48, 1041–1049CrossRefGoogle ScholarPubMed
Deretic, V., Schurr, M. J. and Yu, H. (1995). Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends in Microbiology, 3, 351–356CrossRefGoogle ScholarPubMed
Doggett, R. G., Harrison, G. M., Stillwell, R. N. and Wallis, E. S. (1966). An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. Journal of Paediatrics, 68, 215–221CrossRefGoogle Scholar
Doggett, R. G., Harrison, G. M. and Wallis, E. S. (1964). Comparison of some properties of Pseudomonas aeruginosa isolated from infections in persons with and without cystic fibrosis. Journal of Bacteriology, 87, 427–431Google ScholarPubMed
Doring, G., Goldstein, W., Botzenhart, K., Kharazmi, A., Schiotz, P. O., Hoiby, N. and Dasgupta, M. (1986). Elastase from polymorphonuclear leucocytes: a regulatory enzyme in immune complex disease. Clinical and Experimental Immunology, 64, 597–605Google ScholarPubMed
Elborn, J. S., Prescott, R. J., Stack, B. H., Goodchild, M. C., Bates, J., Pantin, C., Ali, N., Shale, D. J. and Crane, M. (2000). Elective versus symptomatic antibiotic treatment in cystic fibrosis patients with chronic Pseudomonas infection of the lungs. Thorax, 55, 355–358CrossRefGoogle ScholarPubMed
Franklin, M. J. and Ohman, D. E. (1993). Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. Journal of Bacteriology, 175, 5057–5065CrossRefGoogle ScholarPubMed
Franklin, M. J. and Ohman, D. E. (1996). Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. Journal of Bacteriology, 178, 2186–2195CrossRefGoogle ScholarPubMed
Furuya, M. E., Lezana-Fernandez, J. L., Vargas, M. H., Hernandez-Sierra, J. F. and Ramirez-Figueroa, J. L. (2001). Efficacy of human recombinant DNase in pediatric patients with cystic fibrosis. Archives of Medical Research, 32, 32–34CrossRefGoogle ScholarPubMed
Gabriel, S. E., Brigman, K. N., Koller, B. H., Boucher, R. C. and Stutts, M. J. (1994). Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science, 266, 107–109CrossRefGoogle ScholarPubMed
Gilligan, P. H. (1991). Microbiology of airway disease in patients with cystic fibrosis. Clinical Microbiology Reviews, 4, 35–51CrossRefGoogle ScholarPubMed
Govan, J. R. and Deretic, V. (1996). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological Reviews, 60, 539–574Google ScholarPubMed
Harper, M. H. (1930). Two cases of congenital pancreatic steattorhea with infantilism. Medical Journal of Australia, 2, 663–666Google Scholar
Hodson, M. E. (1995). Clinical studies of rhDNase in moderately and severely affected patients with cystic fibrosis – an overview. Respiration, 62, 29–32CrossRefGoogle ScholarPubMed
Hoiby, N. (1982). Microbiology of lung infections in cystic fibrosis. Acta Paediatrica Scandanavica Supplement, 301, 33–54CrossRefGoogle Scholar
Hoiby, N. and Koch, C. (2000). Maintenance treatment of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Thorax, 55, 349–350CrossRefGoogle ScholarPubMed
Hoiby, N., Johansen, Krogh H., Moser, C., Song, Z., Ciofu, O. and Kharazmi, A. (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes and Infection, 3, 23–35CrossRefGoogle Scholar
Ip, M. S. and Lam, W. K. (1996). Bronchiectasis and related disorders. Respirology, 1, 107–114CrossRefGoogle ScholarPubMed
Jass, J. and Lappin-Scott, H. M. (1996). The efficacy of antibiotics enhanced by electrical currents against Pseudomonas aeruginosa biofilms. Journal of Antimicrobial Chemotherapy, 38, 987–1000CrossRefGoogle ScholarPubMed
Jensen, T., Pedersen, S. S., Nielsen, C. H., Hoiby, N. and Koch, C. (1987). The efficacy and safety of ciprofloxacin and ofloxacin in chronic Pseudomonas aeruginosa infection in cystic fibrosis. Journal of Antimicrobial Chemotherapy, 20, 585–594CrossRefGoogle ScholarPubMed
Kennedy, M. J. (2001). Inflammation and cystic fibrosis pulmonary disease. pharmacotherapy, 21, 593–603CrossRefGoogle ScholarPubMed
Kielhofner, M., Atmar, R. L., Hamill, R. J. and Musher, D. M. (1992). Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clinical Infectious Diseases, 14, 403–411CrossRefGoogle ScholarPubMed
Konstan, M. W., Byard, P. J., Hoppel, C. L. and Davis, P. B. (1995). Effect of high-dose ibuprofen in patients with cystic fibrosis. New England Journal of Medicine, 332, 848–854CrossRefGoogle ScholarPubMed
Krivan, H. C., Ginsburg, V. and Roberts, D. D. (1988). Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Archives of Biochemistry and Biophysics, 260, 493–496CrossRefGoogle Scholar
Kunzelmann, K., Schreiber, R., Nitschke, R. and Mall, M. (2000). Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Archiv-European Journal of physiology, 440, 191–201CrossRefGoogle ScholarPubMed
Lam, J., Chan, R., Lam, K. and Costerton, J. W. (1980). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infection and Immunity, 28, 546–556Google ScholarPubMed
Learn, D. B., Brestel, E. P. and Seetharama, S. (1987). Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infection and Immunity, 55, 1813–1818Google ScholarPubMed
Linker, A. and Evans, L. R. (1984). Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. Journal of Bacteriology, 159, 958–964Google ScholarPubMed
Lyczak, J. B., Cannon, C. L. and Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and Infection, 2, 1051–1060CrossRefGoogle ScholarPubMed
Marshall, B. C. and Liou, T. G. (2000). Elusiveness of ideal approach to Pseudomonas aeruginosa infection complicating cystic fibrosis. Lancet, 356, 613–614CrossRefGoogle ScholarPubMed
Martin, D. W., Schurr, M. J., Mudd, M. H., Govan, J. R., Holloway, B. W. and Deretic, V. (1993). Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proceedings of the National Academy of Sciences of the USA, 90, 8377–8381CrossRefGoogle ScholarPubMed
Mathee, K., Ciofu, O., Sternberg, C., Lindum, P. W., Campbell, J. I., Jensen, P., Johnsen, A. H., Givskov, M., Ohman, D. E., Molin, S., Hoiby, N. and Kharazmi, A. (1999). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology, 145, 1349–1357CrossRefGoogle ScholarPubMed
Meluleni, G. J., Grout, M., Evans, D. J. and Pier, G. B. (1995). Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. Journal of Immunology, 155, 2029–2038Google Scholar
Mulvey, M. A., Schilling, J. D., Martinez, J. J. and Hultgren, S. J. (2000). Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proceedings of the National Academy of Sciences of the USA, 97, 8829–8835CrossRefGoogle ScholarPubMed
Nichols, W. W., Dorrington, S. M., Slack, M. P. and Walmsley, H. L. (1988). Inhibition of tobramycin diffusion by binding to alginate. Antimicrobial Agents and Chemotherapy, 32, 518–523CrossRefGoogle ScholarPubMed
Nivens, D. E., Ohman, D. E., Williams, J. and Franklin, M. J. (2001). Role of alginate and its O-acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. Journal of Bacteriology, 183, 1047–1057CrossRefGoogle ScholarPubMed
O'Toole, G. A. and Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304CrossRefGoogle ScholarPubMed
Ollendorf, D. A., McGarry, L. J., Watrous, M. L. and Oster, G. (2000). Use of rhDNase therapy and costs of respiratory-related care in patients with cystic fibrosis. Annals of pharmacotherapy, 34, 304–308CrossRefGoogle ScholarPubMed
Omri, A., Beaulac, C., Bouhajib, M., Montplaisir, S., Sharkawi, M. and Lagace, J. (1994). Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 38, 1090–1095CrossRefGoogle ScholarPubMed
Pedersen, S. S. (1992). Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. Apmis Supplementum, 1–79
Pedersen, S. S., Hoiby, N., Espersen, F. and Koch, C. (1992). Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax, 47, 6–13CrossRefGoogle ScholarPubMed
Pesci, E. C. and Iglewski, B. H. (1997). The chain of command in Pseudomonas quorum sensing. Trends in Microbiology, 5, 132–134CrossRefGoogle ScholarPubMed
Pesci, E. C., Pearson, J. P., Seed, P. C. and Iglewski, B. H. (1997). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology, 179, 3127–3132CrossRefGoogle ScholarPubMed
Pier, G. B. (2000). Role of the cystic fibrosis transmembrane conductance regulator in innate immunity to Pseudomonas aeruginosa infections. Proceedings of the National Academy of Sciences of the USA, 97, 8822–8828CrossRefGoogle ScholarPubMed
Pier, G. B., Coleman, F., Grout, M., Franklin, M. and Ohman, D. E. (2001). Role of alginate O-acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infection and Immunity, 69, 1895–1901CrossRefGoogle ScholarPubMed
Pier, G. B., Grout, M. and Desjardins, D. (1991). Complement deposition by antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide (MEP) and by non-MEP specific opsonins. Journal of Immunology, 147, 1869–1876Google ScholarPubMed
Pier, G. B., Grout, M. and Zaidi, T. S. (1997). Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proceedings of the National Academy of Sciences of the USA, 94, 12088–12093CrossRefGoogle ScholarPubMed
Pier, G. B., Grout, M., Zaidi, T. S. and Goldberg, J. B. (1996). How mutant CFTR may contribute to Pseudomonas aeruginosa infection in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 154, S175–S182CrossRefGoogle ScholarPubMed
Pier, G. B., Grout, M., Zaidi, T., Meluleni, G., Mueschenborn, S. S., Banting, G., Ratcliff, R., Evans, M. J. and Colledge, W. H. (1998). Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature, 393, 79–82CrossRefGoogle ScholarPubMed
Pier, G. B., Saunders, J. M., Ames, P., Edwards, M. S., Auerbach, H., Goldfarb, J., Speert, D. P. and Hurwitch, S. (1987). Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older noncolonized patients with cystic fibrosis. New England Journal of Medicine, 317, 793–798CrossRefGoogle ScholarPubMed
Pier, G. B., Takeda, S., Grout, M. and Markham, R. B. (1993). Immune complexes from immunized mice and infected cystic fibrosis patients mediate murine and human T cell killing of hybridomas producing protective, opsonic antibody to Pseudomonas aeruginosa. Journal of Clinical Investigation, 91, 1079–1087CrossRefGoogle Scholar
Ramsey, B. W., Pepe, M. S., Quan, J. M., Otto, K. L., Montgomery, A. B., Williams-Warren, J., Vasiljev, K. M., Borowitz, D., Bowman, C. M., Marshall, B. C., Marshall, S. and Smith, A. L. (1999). Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. New England Journal of Medicine, 340, 23–30CrossRefGoogle ScholarPubMed
Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N. and Chou, J. L. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245, 1066–1073CrossRefGoogle ScholarPubMed
Scanlin, T. F. and Glick, M. C. (1999). Terminal glycosylation in cystic fibrosis. Biochimica et Biophysica Acta, 1455, 241–253CrossRefGoogle ScholarPubMed
Schroeder, T. H., Zaidi, T. and Pier, G. B. (2001). Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM(1) on epithelial cells. Infection and Immunity, 69, 719–729CrossRefGoogle ScholarPubMed
Sheils, C. A., Kas, J., Travassos, W., Allen, P. G., Janmey, P. A., Wohl, M. E. and Stossel, T. P. (1996). Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. American Journal of Pathology, 148, 919–927Google ScholarPubMed
Simpson, J. A., Smith, S. E. and Dean, R. T. (1989). Scavenging by alginate of free radicals released by macrophages. Free Radical Biology and Medicine, 6, 347–353CrossRefGoogle ScholarPubMed
Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. and Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407, 762–764CrossRefGoogle ScholarPubMed
Suri, R., Metcalfe, C., Lees, B., Grieve, R., Flather, M., Normand, C., Thompson, S., Bush, A. and Wallis, C. (2001). Comparison of hypertonic saline and alternate-day or daily recombinant human deoxyribonuclease in children with cystic fibrosis: a randomised trial. Lancet, 358, 1316–1321CrossRefGoogle ScholarPubMed
Tosi, M. F., Zakem, H. and Berger, M. (1990). Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. Journal of Clinical Investigation, 86, 300–308CrossRefGoogle ScholarPubMed
Vasconcellos, C. A., Allen, P. G., Wohl, M. E., Drazen, J. M., Janmey, P. A. and Stossel, T. P. (1994). Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin. Science, 263, 969–971CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. and Greenberg, E. P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864CrossRefGoogle ScholarPubMed
Wojtczak, H. A., Kerby, G. S., Wagener, J. S., Copenhaver, S. C., Gotlin, R. W., Riches, D. W. and Accurso, F. J. (2001). Beclomethasone diproprionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: a pilot study. Pediatric Pulmonology, 32, 293–302CrossRefGoogle ScholarPubMed
Zahm, J. M., Debordeaux, C., Maurer, C., Hubert, D., Dusser, D., Bonnet, N., Lazarus, R. A. and Puchelle, E. (2001). Improved activity of an actin-resistant DNase I variant on the cystic fibrosis airway secretions. American Journal of Respiratory Critical Care Medicine, 163, 1153–1157CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pseudomonas aeruginosa Biofilms in Lung Infections
    • By Kimberly K. Jefferson, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA, Gerald B. Pier, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pseudomonas aeruginosa Biofilms in Lung Infections
    • By Kimberly K. Jefferson, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA, Gerald B. Pier, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pseudomonas aeruginosa Biofilms in Lung Infections
    • By Kimberly K. Jefferson, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA, Gerald B. Pier, Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Michael Wilson, University College London, Deirdre Devine, Leeds Dental Institute, University of Leeds
  • Book: Medical Implications of Biofilms
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546297.014
Available formats
×