Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-23T19:24:55.651Z Has data issue: false hasContentIssue false

5 - Obstetric Complications and Neurodevelopmental Mechanisms in Schizophrenia

Published online by Cambridge University Press:  10 August 2009

Isabelle M. Rosso
Affiliation:
Department of Psychiatry, Harvard Medical School
Tyrone D. Cannon
Affiliation:
Department of Psychology, University of California, Los Angeles
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Obstetric complications (OCs) are robust environmental correlates of schizophrenia (McNeil, 1988; Cannon, 1997). Deviations from the normal course of pregnancy, delivery, or early neonatal life have been associated with the development of schizophrenia in numerous studies with many different types of samples, including: adult schizophrenics and matched comparison subjects (O'Callaghan et al., 1992; Kendell, Juszczak, & Cole, 1996; Hultman, Ohman, Cnattingius, Wieselgren, & Lindstrom, 1997), siblings and twins discordant for schizophrenia (Lane & Albee, 1966; Pollack, Woerner, Goodman, & Greenberg, 1966; Pollin & Stabenau, 1968; Woerner, Pollack, & Klein, 1971; Markow & Gottesman, 1989; Eagles et al., 1990; Bracha, Torrey, Gottesman, Bigelow, & Cunniff, 1992; Günther-Genta, Bovet, & Hohlfeld, 1994; Kinney et al., 1994; Torrey et al., 1994), adopted schizophrenics (Jacobsen & Kinney, 1980), offspring of schizophrenic parents (Parnas et al., 1982; Fish, Marcus, Hans, Auerbach, & Perdue, 1992), and representative birth cohorts (Buka, Tsuang, & Lipsitt, 1993; Dalman, Allebeck, Cullberg, Grunewald, & Koster, 1999; Zornberg, Buka, & Tsuang, 2000). The two studies reporting null results are not outliers in this respect, only in that the 95 percent confidence intervals of their risk estimates included values of one (Done et al., 1991; Buka et al., 1993). One of these studies found that odds of schizophrenia were 2.6 times higher among individuals with a history of fetal hypoxia than among those without such a history (p = .13), but statistical power was limited by a small number of schizophrenia outcomes (N = 8; Buka et al., 1993).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, S. J., Alessandri, L. M., Badawi, N., Burton, P. R., Pemberton, P. J., & Stanley, F. (1995). Predictors of neonatal encephalopathy in full-term infants. British Medical Journal, 311, 598-602CrossRefGoogle ScholarPubMed
Allen, M., & Young, S. (1978). Phencyclidine induced psychosis. American Journal of Psychiatry, 135, 1081–1084Google ScholarPubMed
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, D.C.: Author
Andreasen, N. C. (1983). The Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa
Andreasen, N. C. (1984). The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: University of Iowa
Arnold, S. E., & Trojanowski, J. Q. (1996). Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathologica, 92, 217–231CrossRefGoogle ScholarPubMed
Bearden, C. E., Rosso, I. M., Hollister, J. M., Sanchez, L. E., Hadley, T., & Cannon, T. D. (2000). A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophrenia Bulletin, 26, 395–410CrossRefGoogle ScholarPubMed
Braaksma, M. A., Douma, B. R. K., Nyakas, C., Luiten, P. G. M., Aarnoudse, J. G. (1999). Delayed neuronal migration of protein kinase C-immunoreactive cells in hippocampal CA1 area after 48 h of moderate hypoxemia in the near term ovine fetus. Developmental Brain Research, 114, 253–260CrossRefGoogle Scholar
Bracha, H. S., Torrey, E. F., Gottesman, I. I., Bigelow, L. B., & Cunniff, C. (1992). Second-trimester markers of fetal size in schizophrenia: a study of monozygotic twins. American Journal of Psychiatry, 149, 1355–1361Google ScholarPubMed
Buka, S. L., Tsuang, M. T., & Lipsitt, L. P. (1993). Pregnancy/delivery complications and psychiatric diagnosis. A prospective study. Archives of General Psychiatry, 50, 151–156CrossRefGoogle ScholarPubMed
Cannon, T. D. (1997). On the nature and mechanisms of obstetric influences in schizophrenia: A review and synthesis of epidemiologic studies. International Review of Psychiatry, 9, 387–397CrossRefGoogle Scholar
Cannon, T. D. (1998). Neurodevelopmental influences in the genesis and epigenesis of schizophrenia: An overview. Applied & Preventive Psychology, 7, 47–62CrossRefGoogle Scholar
Cannon, T. D., Bearden, C. E., Hollister, J. M., Rosso, I. M., Sanchez, L. E., Hadley, T. (2000). Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: A prospective cohort study. Schizophrenia Bulletin 26, 379–394CrossRefGoogle ScholarPubMed
Cannon, T. D., Kaprio, J., Lönqvist, J., Huttunen, M. O., & Koskenvuo, M. (1998). The genetic epidemiology of schizophrenia in a Finnish twin cohort: A population-based modeling study. Archives of General Psychiatry, 55, 67–74CrossRefGoogle Scholar
Cannon, T. D., & Mednick, S. A. (1991). Fetal neurodevelopment and adult schizophrenia: an elaboration of the paradigm. In S. A. Mednick, T. D. Cannon, C. E. Barr, & M. Lyon (Eds.), Fetal neural development and adult schizophrenia. New York: Cambridge University Press
Cannon, T. D., Mednick, S. A., & Parnas, J. (1990). Antecedents of predominantly negative- and predominantly positive-symptom schizophrenia in a high-risk population. Archives of General Psychiatry, 47, 622–632CrossRefGoogle Scholar
Cannon, T. D., Mednick, S. A., Parnas, J., Schulsinger, F., Praestholm, J., & Vestergaards, A. (1993). Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Genetic and perinatal contributions. Archives of General Psychiatry, 50, 551–564CrossRefGoogle Scholar
Cannon, T. D., Rosso, I. M., Hollister, J. M., Bearden, C. E., Sanchez, L. E., & Hadley, T. (2000). A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophrenia Bulletin, 26, 351–366CrossRefGoogle ScholarPubMed
Cannon, T. D., Erp, T. G. M., Huttunen, M., Lönnqvist, J., Salonen, O., Valanne, L., Poutanen, V. P., Standertskjöld-Nordenstam, C. G., Gur, R. E., & Yan, M. (1998). Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Archives of General Psychiatry, 55, 1084–1091CrossRefGoogle ScholarPubMed
Cannon, T. D., Erp, T. G. M., Rosso, I. M., Huttunen, M., Lönnqvist, J., Salonen, O., Valanne, L., Poutanen, V. P., Standertskjöld-Nordenstam, C. G. (2002). Fetal hypoxia and structural brain pathology in schizophrenics, their siblings, and controls. Archives of General Psychiatry, 59, 35–41CrossRefGoogle Scholar
Cantor-Graae, E., McNeil, T. F., Sjostrom, K., Nordstrom, L. G., & Rosenlund, T. (1994). Obstetric complications and their relationship to other etiological risk factors in schizophrenia. A case-control study. Journal of Nervous and Mental Disease, 182, 645–650CrossRefGoogle ScholarPubMed
Choi, D. W. (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Progress in Brain Research, 100, 47–51CrossRefGoogle ScholarPubMed
Csernansky, J. G., & Bardgett, M. E. (1998). Limbic-cortical neuronal damage and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 24, 231–248CrossRefGoogle ScholarPubMed
Dalman, C., Allebeck, P., Cullberg, J., Grunewald, C., & Koster, M. (1999). Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Archives of General Psychiatry, 56, 234–240CrossRefGoogle ScholarPubMed
DeLisi, L. E., Goldin, L. R., Maxwell, M. E., Kazuba, D. M., & Gershon, E. S. (1987). Clinical features of illness in siblings with schizophrenia or schizoaffective disorder. Archives of General Psychiatry, 44, 891–896CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11 [see comments]. BMJj (Clinical Research Ed.), 309(6956), 699–703CrossRefGoogle Scholar
Done, D. J., Johnstone, E. C., Frith, C. D., Golding, J., Shepherd, P. M., & Crow, T. J. (1991). Complications of pregnancy and delivery in relation to psychosis in adult life: data from the British perinatal mortality survey sample. British Medical Journal, 302, 1576–1580CrossRefGoogle ScholarPubMed
du Plessis, A. J., & Johnston, M. V. (1997). Hypoxic-ischemic brain injury in the newborn. Cellular mechanisms and potential strategies for neuroprotection. Clinics in Perinatology, 24(3), 627–654CrossRefGoogle ScholarPubMed
Eagles, J. M., Gibson, I., Bremner, M. H., Clunie, F., Ebmeier, K. P., & Smith, N. C. (1990). Obstetric complications in DSM-III schizophrenics and their siblings. Lancet, 335, 1139–1141CrossRefGoogle ScholarPubMed
el-Mekki, A., Deverajan, L. V., Soufi, S., Strannegard, O., & al-Nakib, W. (1988). Specific and non-specific serological markers in the screening for congenital CMV infection. Epidemiology and Infection, 101, 495–501CrossRefGoogle ScholarPubMed
Falkai, P., & Bogerts, B. (1986). Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Sciences, 236, 154–161CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319–334CrossRefGoogle ScholarPubMed
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., & Perdue, S. (1992). Infants at risk for schizophrenia: Sequelae of a genetic neurointegrative defect. Archives of General Psychiatry, 49, 221–235CrossRefGoogle ScholarPubMed
Foerster, A., Lewis, S. W., Owen, M. J., & Murray, R. M. (1991). Low birth weight and a family history of schizophrenia predict poor premorbid functioning in psychosis. Schizophrenia Research, 5, 13–20CrossRefGoogle Scholar
Garey, L. J., Ong, W. Y., Patel, T. S., Kanani, M., Davis, A., Matimer, A., Barnes, T. R., & Hirsch, S. R. (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol Neurosurg Psychiatry, 65(4), 446–453CrossRefGoogle Scholar
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57(1), 65–73CrossRefGoogle Scholar
Glantz, L. A., & Lewis, D. A. (1997). Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Archives of General Psychiatry, 54, 943–952CrossRefGoogle ScholarPubMed
Gluckman, P. D., & Williams, C. E. (1992). When and why do brain cells die? Developmental Medicine and Child Neurology, 34, 1010–1021CrossRefGoogle ScholarPubMed
Goldberg, M. P., Weiss, J. H., Pham, P. C., & Choi, D. W. (1987). N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. Journal of Pharmacology and Experimental Therapy, 243, 784–791Google ScholarPubMed
Gottesman, I. I., & Moldin, S. O. (1997). Schizophrenia genetics at the millenium: cautious optimism. Clinical Genetics, 52, 404–407CrossRefGoogle Scholar
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: schizophrenia. Neuroscience, 41, 1–24CrossRefGoogle ScholarPubMed
Günther-Genta, F., Bovet, P., & Hohlfeld, P. (1994). Obstetric complications and schizophrenia. A case-control study. British Journal of Psychiatry, 164, 165–170CrossRefGoogle ScholarPubMed
Hanson, D. R., Gottesman, I. I., & Heston, L. L. (1976). Some possible childhood indicators of adult schizophrenia inferred from children of schizophrenics. British Journal of Psychiatry, 129, 142–154CrossRefGoogle ScholarPubMed
Heun, R., & Maier, W. (1993). The role of obstetric complications in schizophrenia. Journal of Nervous and Mental Disease, 181, 220–226CrossRefGoogle Scholar
Hill, A. (1991). Current concepts of hypoxic-ischemic cerebral injury in the term newborn. Pediatric Neurology, 7, 317–325CrossRefGoogle ScholarPubMed
Hultman, C. M., Ohman, A., Cnattingius, S., Wieselgren, I. M., & Lindstrom, L. H. (1997). Prenatal and neonatal risk factors for schizophrenia. British Journal of Psychiatry, 170, 128–133CrossRefGoogle Scholar
Hüttenlocher, P. R. (1979). Synaptic density in the human frontal cortex: Developmental changes and effects of aging. Brain Research, 163, 195–205Google ScholarPubMed
Hwang, J. Y., Kim, Y. H., Ahn, Y. H., Wie, M. B., & Koh, J. H. (1999). N-methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Experimental Neurology, 159, 124–130CrossRefGoogle ScholarPubMed
Jacobsen, B., & Kinney, D. K. (1980). Perinatal complications in adopted and non-adopted schizophrenics and their controls: Preliminary results. Acta Psychiatrica Scandinavica, 285, 337–351CrossRefGoogle Scholar
Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20, 201–205CrossRefGoogle ScholarPubMed
Jeste, D. V., & Lohr, J. B. (1989). Hippocampal pathologic findings in schizophrenia. A morphometric study. Archives of General Psychiatry, 46, 1019–1024CrossRefGoogle ScholarPubMed
Jones, P., & Murray, R. M. (1991). The genetics of schizophrenia is the genetics of neurodevelopment. British Journal of Psychiatry 158, 615–623CrossRefGoogle ScholarPubMed
Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344(8934), 1398–1402CrossRefGoogle ScholarPubMed
Kendell, R. E., Juszczak, E., & Cole, S. K. (1996). Obstetric complications and schizophrenia: a case control study based on standardised obstetric records. British Journal of Psychiatry, 168, 556–561CrossRefGoogle ScholarPubMed
Keshavan, M. S., Anderson, S., & Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. Journal of Psychiatric Research, 28, 239–265CrossRefGoogle ScholarPubMed
Kinney, D. K., Levy, D. L., Yurgelun-Todd, D. A., Medoff, D., LaJonchere, C. M., & Radford-Paregol, M. (1994). Season of birth and obstetrical complications in schizophrenics. Journal of Psychiatric Research, 28, 499–509CrossRefGoogle ScholarPubMed
Kraepelin, E. (1919). Dementia Praecox. Edinburgh: Livingstone
Kuchna, I. (1994). Quantitative studies of human newborns' hippocampal pyramidal cells after perinatal hypoxia. Folia Neuropathologica, 32, 9–16Google ScholarPubMed
Lane, E. A., & Albee, G. W. (1966). Comparative birth weights of schizophrenics and their siblings. Journal of Psychology, 64, 227–231CrossRefGoogle Scholar
Lehrnbecher, T., Schrod, L., Rutsch, P., Roos, T., Martius, J., & Stockhausen, H. B. (1996). Immunologic parameters in cord blood indicating early-onset sepsis. Biology of the Neonate, 4, 206–212CrossRefGoogle Scholar
Lewis, S. W., & Murray, R. M. (1987). Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. Journal of Psychiatric Research, 21, 413–421CrossRefGoogle ScholarPubMed
Lewis, S. W., Owen, M. J., & Murray, R. M. (1989). Obstetric complications and schizophrenia: methodology and mechanisms. In S. C. Schulz & C. A. Tamminga (Eds.), Schizophrenia: scientific progress (pp. 56–68). New York: Oxford University Press
Lewis, S. W., Reveley, A. M., Reveley, M. A., Chitkara, B., & Murray, R. M. (1987). The familial/sporadic distinction as a strategy in schizophrenia research. British Journal of Psychiatry 151, 306–313CrossRefGoogle ScholarPubMed
Lipska, B. K., & Weinberger, D. R. (1993). Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Brain Res Dev Brain Res, 75(2), 213–222CrossRefGoogle ScholarPubMed
Loranger, A. W., Sussman, V. L., Oldham, J. M., & Russakoff, L. M. (1985). Personality disorder examination. A structured interview for making diagnosis of DSM-IIIR personality disorders. White Plains, N.Y.: Cornell Medical College
Low, J. A. (1988). The role of blood gas and acid-base assessment in the diagnosis of intrapartum fetal asphyxia. American Journal of Obstetrics and Gynecology, 159, 1235–1240CrossRefGoogle Scholar
Low, J. A., Lindsay, B. G., & Derrick, B. A. (1997). Threshold of metabolic acidosis associated with newborn complications. American Journal of Obstetrics and Gynecology, 177, 1391–1394CrossRefGoogle ScholarPubMed
Low, J. A., Simpson, L. L., & Ramsey, D. A. (1992). The clinical diagnosis of asphyxia responsible for brain damage in the human fetus. American Journal of Obstetrics and Gynecology, 167, 11–15CrossRefGoogle ScholarPubMed
Low, J. A., Simpson, L. L., Tonni, G., & Chamberlain, S. (1995). Limitations in the clinical prediction of intrapartum fetal asphyxia. American Journal of Obstetrics and Gynecology, 172, 801–804CrossRefGoogle ScholarPubMed
Luhmann, H. J., & Raabe, K. (1996). Characterization of neuronal migration disorders in neocortical structures: I. Expression of epileptiform activity in an animal model. Epilepsy Research 26, 67–74CrossRefGoogle Scholar
Maier, R. F., Gunther, A., Vogel, M., Dudenhausen, J. W., & Obladen, M. (1994). Umbilical venous erythropoietin and umbilical arterial pH in relation to morphologic placental abnormalities. Obstetrics and Gynecology, 84, 81–87Google ScholarPubMed
Marcus, J., Auerbach, J., Wilkinson, L., & Burack, C. M. (1981). Infants at risk for schizophrenia. The Jerusalem Infant Development Study. Archives of General Psychiatry, 38, 703–713CrossRefGoogle ScholarPubMed
Markow, T. A., & Gottesman, I. I. (1989). Fluctuating dermatoglyphic asymmetry in psychotic twins. Psychiatry Research, 29, 37–43CrossRefGoogle ScholarPubMed
McCreadie, R. G., Hall, D. J., Berry, I. J., Robertson, L. J., Ewing, J. I., & Geals, M. F. (1992). The Nithsdale schizophrenia surveys. X: Obstetric complications, family history and abnormal movements. British Journal of Psychiatry, 160, 799–805CrossRefGoogle ScholarPubMed
McDonald, J. W., & Johnston, M. V. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews, 15, 41–70CrossRefGoogle ScholarPubMed
McDonald, J. W., Silverstein, F. S., & Johnston, M. V. (1988). Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Research 459, 200–203CrossRefGoogle ScholarPubMed
McGlashan, T. H., & Hoffman, R. E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Archives of General Psychiatry, 57, 637–648CrossRefGoogle ScholarPubMed
McNeil, T. F. (1988). Obstetric factors and perinatal injuries. In M. T. Tsuang & J. C. Simpson (Eds.), Handbook of schizophrenia, vol. 3, Nosology, epidemiology and genetics (pp. 319–343). New York: Elsevier
Mirdal, G. K., Mednick, S. A., Schulsinger, F., & Fuchs, F. (1974). Perinatal complications in children of schizophrenic mothers. Acta Psychiatrica Scandinavica, 50, 553–568CrossRefGoogle ScholarPubMed
Mitani, A., Watanabe, M., & Kataoka, K. (1998). Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus. Journal of Neuroscience, 18, 7941–7952CrossRefGoogle ScholarPubMed
Murray, R. M., Lewis, S. W., Reveley, A. M. (1985). Towards an aetiological classification of schizophrenia. Lancet, 1(8436): 1023–1026CrossRefGoogle ScholarPubMed
Murtha, A. P., Greig, P. C., Jimmerson, C. E., Roitman-Johnson, B., Allen, J., & Herbert, W. N. (1996). Maternal serum interleukin-6 concentrations in patients with preterm premature rupture of membranes and evidence of infection. American Journal of Obstetrics and Gynecology, 175, 966–969CrossRefGoogle Scholar
Nelson, K. B., & Ellenberg, J. H. (1984). Obstetric complications as risk factors for cerebral palsy or seizure disorders. Jama, 251(14), 1843–1848CrossRefGoogle ScholarPubMed
Nimgaonkar, V. L., Wessely, S., & Murray, R. M. (1988). Prevalence of familiality, obstetric complications, and structural brain damage in schizophrenic patients. British Journal of Psychiatry, 153, 191–197CrossRefGoogle ScholarPubMed
Niswader, K. R., & Gordon, M. (1972). The collaborative perinatal study of the National Institute of Neurological Diseases and Stroke: The women and their pregnancies. Philadelphia: WB Saunders
O'Callaghan, E., Gibson, T., Colohan, H. A., Buckley, P., Walshe, D. G., Larkin, C., & Waddington, J. L. (1992). Risk of schizophrenia in adults born after obstetric complications and their association with early onset of illness: a controlled study. British Medical Journal, 305, 1256–1259CrossRefGoogle ScholarPubMed
O'Donnell, P., & Grace, A. A. (1998). Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptoms clusters. Schizophrenia Bulletin, 24, 267–283CrossRefGoogle ScholarPubMed
Olney, J. W., & Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry, 52, 998–1007CrossRefGoogle Scholar
Parnas, J., Schulsinger, F., Teasdale, T. W., Schulsinger, H., Feldman, P. M., & Mednick, S. A. (1982). Perinatal complications and clinical outcome within the schizophrenia spectrum. British Journal of Psychiatry, 140, 416–420CrossRefGoogle ScholarPubMed
Pettegrew, J. W., Keshavan, M. S., & Minshaw, N. J. (1993). 31P Nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophrenia Bulletin, 19, 35–53CrossRefGoogle Scholar
Poets, F. C., Stebbens, A. V., Richard, D., & Southall, P. D. (1995). Prolonged episodes of hypoxemia in preterm infants undetectable by cardiorespiratory monitors. Pediatrics, 95, 860–863Google ScholarPubMed
Pollack, M., Woerner, M. G., Goodman, W., & Greenberg, I. M. (1966). Childhood development patterns of hospitalized adult schizophrenic and nonschizophrenic patients and their siblings. American Journal of Orthopsychiatry, 36, 510–517CrossRefGoogle ScholarPubMed
Pollin, W., & Stabenau, J. R. (1968). Biological, psychological and historical differences in a series of monozygotic twins discordant for schizophrenia. In D. Rosenthal & S. S. Kety (Eds.), The transmission of schizophrenia (pp. 317–332). London: Pergamon PressCrossRef
Rantakallio, P., & Wendt, L. (1986). A prospective comparative study of the aetiology of cerebral palsy and epilepsy in a one-year birth cohort from Northern Finland. Acta Paediatr Scand, 75(4), 586–592CrossRefGoogle Scholar
Rees, S., Stringer, M., Just, Y., Hooper, S. B., & Harding, R. (1997). The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Developmental Brain Research, 103(2), 103–118CrossRefGoogle ScholarPubMed
Rees, S., Mallard, C., Breen, S., Stringer, M., Cock, M., & Harding, R. (1998). Fetal brain injury following prolonged hypoxemia and placental insufficiency. Comparative Biochemistry and Physiology 119A, 653–660CrossRefGoogle Scholar
Reveley, A. M., Reveley, M. A., & Murray, R. M. (1984). Cerebral ventricular enlargement in non-genetic schizophrenia: a controlled twin study. British Journal of Psychiatry, 144, 89–93CrossRefGoogle ScholarPubMed
Rieder, R. O., Broman, S. H., & Rosenthal, D. (1977). The offspring of schizophrenics. II. Perinatal factors and IQ. Archives of General Psychiatry, 34, 789–799CrossRefGoogle ScholarPubMed
Rosenberg, P. A. (1997). Potential therapeutic intervention following hypoxic-ischemic insult. Mental Retardation and Developmental Disabilities Research Reviews, 3, 76–843.0.CO;2-O>CrossRefGoogle Scholar
Rosso, I. M., Bearden, C. E., Hollister, J. M., Gasperoni, T. L., Sanchez, L. E., Hadley, T., & Cannon, T. D. (2000). Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: A prospective cohort study. Schizophrenia Bulletin 26, 367–378CrossRefGoogle ScholarPubMed
Rosso, I. M., Cannon, T. D., Huttunen, T., Huttunen, M. O., Lönnqvist, J., & Gasperoni, T. L. (2000). Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. American Journal of Psychiatry 157, 801–807CrossRefGoogle Scholar
Rothbard, A. B., Schinnar, A. P., Hadley, T. R., & Rovi, J. I. (1990). Integration of mental health data on hospital and community services. Administrative Policy in Mental Health, 18, 91–99CrossRefGoogle Scholar
Roy, M. A., Flaum, M. A., Gupta, S., Jaramillo, L., & Andreasen, N. C. (1994). Epidemiological and clinical correlates of familial and sporadic schizophrenia. Acta Psychiatrica Scandinavica, 89, 324–328CrossRefGoogle ScholarPubMed
Sacker, A., Done, D. J., Crow, T. J., & Golding, J. (1995). Antecedents of schizophrenia and affective illness. Obstetric complications. British Journal of Psychiatry, 166, 734–741CrossRefGoogle ScholarPubMed
Salafia, C. M., Minior, V. K., Lopez-Zeno, J. A., Whittington, S. S., Pezzullo, J. C., & Vintzileos, A. M. (1995). Relationship between placental histologic features and umbilical cord blood gases in preterm gestations. American Journal of Obstetrics and Gynecology, 173, 1058–1064CrossRefGoogle ScholarPubMed
Scheetz, A. J., & Constantine-Paton, M. (1994). Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB Journal, 8, 745–752CrossRefGoogle ScholarPubMed
Schwarzkopf, S. B., Nasrallah, H. A., Olson, S. C., Coffman, J. A., & McLaughlin, J. A. (1989). Perinatal complications and genetic loading in schizophrenia: preliminary findings. Psychiatry Research, 27, 233–239CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex: A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52, 805–818CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1998). Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: Application of a three-dimensional, stereologic counting method. Journal of Comparative Neurology, 392, 402–4123.0.CO;2-5>CrossRefGoogle ScholarPubMed
Smiley, J. F., & Goldman-Rakic, P. S. (1993). Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: A laminar analysis using the silver enhanced diaminobenzidine-sulfide (SEDS) immunolabeling technique. Cerebral Cortex, 3, 223–238CrossRefGoogle ScholarPubMed
Spitzer, R. L., Williams, J. B., & Gibbon, M. (1987). Instruction manual for the Structured Clinical Interview for DSM-III-R (SCID). New York: New York State Psychiatric Institute
Stokes, M. E., Davis, C. S., & Koch, G. G. (1995). Categorical data analysis using the SAS system. Cary, N.C.: SAS Institute
Storm-Mathisen, J., & Otterson, O. P. (1990). Immunocytochemistry of glutamate at the synaptic level. Journal of Histochemistry and Cytochemistry, 38, 1733–1743CrossRefGoogle ScholarPubMed
Torrey, E. F., Taylor, E. H., Bracha, H. S., Bowler, A. E., McNeil, T. F., Rawlings, R. R., Quinn, P. O., Bigelow, L. B., Rickler, K., Sjostrom, K., Higgins, E. S., & Gottesman, I. I. (1994). Prenatal origin of schizophrenia in a subgroup of discordant monozygotic twins. Schizophrenia Bulletin, 20, 423–432CrossRefGoogle Scholar
Verdoux, H., Geddes, J. R., Takei, N., Lawrie, S. M., Bovet, P., Eagles, J. M., Heun, R., McCreadie, R. G., McNeil, T. F., O'Callaghan, E., Stober, G., Willinger, M. U., Wright, P., & Murray, R. M. (1997). Obstetric complications and age at onset in schizophrenia: An international collaborative meta-analysis of individual patient data. American Journal of Psychiatry, 154, 1220–1227Google ScholarPubMed
Volpe, J. J. (1995). Hypoxic-ischemic encephalopathy: neuropathology and pathogenesis. In Neurology of the newborn, 3rd ed. (pp. 279–312). Philadelphia: WB Saunders
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 600–669CrossRefGoogle ScholarPubMed
Walker, E. F. (1994). Developmentally moderated expressions of the neuropathology underlying schizophrenia. Schizophrenia Bulletin, 20(3), 453–480CrossRefGoogle ScholarPubMed
Walker, E. F., Savoie, T., & Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bulletin, 20(3), 441–451CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1995). Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophrenia Research, 16, 87–110CrossRefGoogle ScholarPubMed
Woerner, M. G., Pollack, M., & Klein, D. F. (1971). Birth weight and length in schizophrenics personality disorders and their siblings. British Journal of Psychiatry, 118, 461–464CrossRefGoogle ScholarPubMed
Woerner, M. G., Pollack, M., & Klein, D. F. (1973). Pregnancy and birth complications in psychiatric patients: a comparison of schizophrenic and personality disorder patients with their siblings. Acta Psychiatrica Scandinavica, 49, 712–721CrossRefGoogle ScholarPubMed
Wood, G. K., Lipska, B. K., & Weinberger, D. R. (1997). Behavioral changes in rats with early ventral hippocampal damage vary with age at damage. Brain Res Dev Brain Res, 101(1–2), 17–25CrossRefGoogle ScholarPubMed
World Health Organization. (1969). Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death, 8th ed. Geneva: WHO
Yolken, R. H., & Torrey, E. F. (1995). Viruses, schizophrenia, and bipolar disorder. Clinical Microbiology Reviews, 8, 131–145Google ScholarPubMed
Yue, X., Mehmet, H., Penrice, J., Cooper, C., Cady, E., Wyatt, J. S., Reynolds, E. O., Edwards, A. D., & Squier, M. V. (1997). Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathology and Applied Neurobiology, 23, 16–25CrossRefGoogle ScholarPubMed
Zornberg, G. L., Buka, S. L., & Tsuang, M. T. (2000). Hypoxic-ischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: A 19-year longitudinal study. American Journal of Psychiatry 157, 196–202CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×