Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-19T06:30:34.249Z Has data issue: false hasContentIssue false

26 - Copper Metabolism and Copper Storage Disorders

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Judith A. O'Connor M.D.
Affiliation:
Pediatric Gastroenterology, Sacred Heart Children's Hospital, Spokane, Washington
Ronald J. Sokol M.D.
Affiliation:
Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

The accumulation of excess copper in the liver is toxic in humans and other mammals and may lead to hepatitis, fulminant hepatic failure, cirrhosis, and death. Of the several human copper storage diseases that have been described, the molecular basis of only Wilson's disease is understood, with the discovery of the Wilson's disease gene (ATP7B) in 1993. The therapeutic success using oral copper chelating agents and zinc therapy makes Wilson's disease one of the few treatable metabolic liver diseases. In cases with a fulminant presentation or advanced disease at diagnosis, copper chelation is ineffective and liver transplantation is lifesaving. Indian childhood cirrhosis (ICC) has been defined as a copper storage disorder affecting children primarily of Indian descent and evolving to cirrhosis and death before age 3–4 years without treatment. Children from North America, Asia, Austria, Germany, and other countries have been described with a similar condition, which has been termed idiopathic copper toxicosis (ICT). In this chapter, copper physiology and mechanisms of copper hepatotoxicity are reviewed, followed by descriptions of the major copper storage diseases of childhood.

COPPER ABSORPTION AND METABOLISM

The normal adult Western diet contains 2–5 mg/d of copper. The efficiency of copper absorption in adults ranges from 55–75% [1], with higher absorption at lower intakes [1, 2] (Figure 26.1). Foods containing high amounts of copper include unprocessed wheat, dried beans, peas, shellfish (particularly oysters), chocolate, liver, and kidney. The estimated daily copper requirement for adults is approximately 1.3–1.7 mg [3].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klevay, L M, Sandstead, H, Munoz, J. The copper requirement of healthy men. Am J Clin Nutr 1978;31:711.Google Scholar
Linder, M C, Hazegh-Azam, M. Copper biochemistry and molecular biology. Am J Clin Nutr 1996;96(suppl):797–811.Google Scholar
Weber, P M, O'Reilly, S, Pollycove, M. Gastrointestinal absorption of copper: studies with 64Cu, 95Zr, a whole body counter and the scintillation camera. J Nucl Med 1969;10:591–6.Google ScholarPubMed
Campen, D R, Scaife, P U. Zinc interference with copper absorption in rats. J Nutr 1967;91:473–6.Google ScholarPubMed
Gollan, J L, Davis, P S, Deller, D J. A radiometric assay of copper binding in biological fluids and its application to alimentary secretions in normal subjects and Wilson's disease. Clin Chim Acta 1971;31:197–204.CrossRefGoogle ScholarPubMed
Gollan, J L. Studies on the nature of complexes formed by copper with human alimentary secretions and their influence on copper absorption in the rat. Clin Sci Mol Med 1975;49:237.Google ScholarPubMed
Kirchgessner, M, Grassman, E. The dynamics of copper absorption. In: Mills, C F. Trace element metabolism in animals. Edinburgh: Churchill Livingstone, 1970:277.Google Scholar
Chou, T-P, Adolph, W H. Copper metabolism in man. Biochem J 1935;29:476–9.CrossRefGoogle ScholarPubMed
Moore, T, Constable, B J, Day, K C. Copper deficiency in rats fed upon raw meat. Br J Nutr 1964;18:135–46.CrossRefGoogle ScholarPubMed
Schmitt, R C, Darwish, H M, Cheney, J C. Copper transport kinetics by isolated rat hepatocytes. Am J Physiol 1983;244:1–83.Google ScholarPubMed
Ettinger, M J, Darwish, H M, Schmitt, R D. Mechanism of copper transport from plasma to hepatocytes. Fed Proc 1986;45:2800–4.Google ScholarPubMed
Zhou, B, Gitscher, J. hCTRI: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 1997;94:7481–6.CrossRefGoogle Scholar
Lee, J, Pena, M, Nose, Y, Thiele, D. Biochemical characterization of the human Copper transporter Ctr1. J Biol Chem 2002;277:4380–7.CrossRefGoogle ScholarPubMed
Harris, D I M, Sass-Kortsak, A. The influence of amino acids on copper uptake by rat liver slices. J Clin Invest 1967;46:659–67.CrossRefGoogle ScholarPubMed
Klomp, L W, Liu, S J, Yuan, D S. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 1997;272:9221–6.CrossRefGoogle ScholarPubMed
Klomp, A E, Juijin, J A, Vand Der Gun, L T. The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem J 2003;370:881–9.CrossRefGoogle Scholar
Petris, M J, Smith, K, Lee J Thiele, D J. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 2003;278:9639–46.CrossRefGoogle ScholarPubMed
Cartwright, G E, Hodges, R E, Gubler, C J. Studies on copper metabolism. VIII. Hepatolenticular degeneration. J Clin Invest 1954;33:1487–501.CrossRefGoogle Scholar
Canelas, H M, Jorge, F G, Tognola, W A. Metabolic balances of copper in patients with hepatolenticular degeneration submitted to vegetarian and mixed diets. J Neurol Neurosurg Psychiatry 1967;30:371–3.CrossRefGoogle ScholarPubMed
Turnlung, J R, Keyes, W R, Anderson, H L. Copper absorption and retention in young men at three levels of dietary copper using the stable isotope, 65Cu. Am J Clin Nutr 1989;49:870–8.CrossRefGoogle Scholar
Harrison, M D, Jones, C E, Dameron, C T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 1999;4:145–53.CrossRefGoogle ScholarPubMed
Rae, T D, Torres, A S, Pufahl, R A, O'Halloran, T V. Mechanism of Cu;Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 2001;276:5166–76.CrossRefGoogle ScholarPubMed
O'Halloran, T V, Culotta, V C. Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 2000;275:25057–60.CrossRefGoogle ScholarPubMed
Culotta, V C, Klomp, L W, Strain, J. The copper chaperone for superoxide dismutase. J Biol Chem 1997;272:23469–72.CrossRefGoogle ScholarPubMed
Amaravadi, R, Glerum, D M, Tzagoloff, A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet 1997;99:329–33.CrossRefGoogle ScholarPubMed
Portnoy, M E, Rosenzweig, A C, Roe, T. Structure-function analyses of the ATX1 metallochaperone. J Biol Chem 1999;274:15041–5.CrossRefGoogle ScholarPubMed
Sternlieb, I, Morell, A G, Tucker, W D. The incorporation of copper into ceruloplasmin in vivo: studies with copper 64 and copper 67. J Clin Invest 1961;40:1834–40.CrossRefGoogle Scholar
Neifakh, S A, Monakhov, N K, Shaponshnikov, A M. Localization of ceruloplasmin synthesis in human and monkey liver cells and its copper regulation. Experientia 1969;25:337–44.CrossRefGoogle ScholarPubMed
Harris, Z L, Klomp, L W J, Gitlin, J D. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 1998;67(suppl):972–7.CrossRefGoogle Scholar
Frieden, E, Hsieh, H S. The biological role of ceruloplasmin and its oxidase activity. Adv Exp Med Biol 1976;74:505–29.Google ScholarPubMed
Barass, B C, Coult, D B, Pinder, R M. Substrate specificity of ceruloplasmin indoles and indole isosteres. Biochem Pharmacol 1973;22:2891.CrossRefGoogle Scholar
Dormandy, T L. Free-radical oxidation and antioxidants. Lancet 1978;1:647–50.Google ScholarPubMed
Cranfield, L M, Gollan, J L, White, A G. Serum antioxidant activity in normal and abnormal subjects. Ann Clin Biochem 1979;16:299–306.CrossRefGoogle ScholarPubMed
Scheinberg, I H, Cook, C D, Murphy, J A. The concentration of copper and ceruloplasmin in maternal and infant plasma at delivery. J Clin Invest 1954;33:963.Google Scholar
Schilsky, M L, Sternlieb, I. Overcoming obstacles to the diagnosis of Wilson's disease. Gastroenterology 1997;113:350–3.Google Scholar
Frommer, D J. Defective biliary excretion of copper in Wilson's disease. Gut 1974;15:125–9.CrossRefGoogle ScholarPubMed
Berge Henegouwen, G P, Tangedahl, T N, Hofmann, A F. Biliary secretion of copper in healthy man. Quantitation by an intestinal perfusion technique. Gastroenterology 1977;72:1228–31.Google ScholarPubMed
Sluis, B, Rothuizen, J, Pearson, P L. Identification of a new copper metabolism gene by positional cloning in a purebred dog populationHum Mol Genet 2002;11:165–73.CrossRefGoogle Scholar
Mueller, T, Sluis, B, ZhernakovaA, et al A, et al. The canine copper toxicosis gene MURR1 does not cause non-Wilsonian hepatic copper toxicosis. J Hepatol 2003;38:164–8.CrossRefGoogle Scholar
Tao, T Y, Liu, F, Klomp, L. The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 2003;278:41593–6.CrossRefGoogle ScholarPubMed
Stuehler, B, Reichert, J, Stemmel, W, Schaefer, M. Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients. J Mol Med 2004;82:629–6.CrossRefGoogle ScholarPubMed
Evans, J, Newman, S, Sherlock, S. Liver copper levels in intrahepatic cholestasis of childhood. Gastroenterology 1978;75:875–8.Google ScholarPubMed
Fleming, C R, Dickson, E R, Baggenstoss, A H. Copper and primary biliary cirrhosis. Gastroenterology 1974;67:1182–7.Google ScholarPubMed
Evans, G W. Copper homeostasis in the mammalian system. Physiol Rev 1973;53:535–70.CrossRefGoogle ScholarPubMed
Ryden, L, Deutsch, H F. Preparation and properties of the major copper-binding component in human fetal liver. J Biol Chem 1978;253:519–24.Google ScholarPubMed
Sternlieb, I. Copper and the liver. Gastroenterology 1980;78:1615–28.Google ScholarPubMed
Sass-Kortsak, A. Copper metabolism. Adv Clin Chem 1965;8:1–67.Google ScholarPubMed
Dameron, C T, Harrison, M D. Mechanisms for protection against copper toxicity. Am J Clin Nutr 1998;67(suppl):1091–7.CrossRefGoogle Scholar
Twedt, D C, Sternlieb, I, Gilbertson, S R. Clinical morphologic, and chemical studies on copper toxicosis of Bedlington terriers. J Am Vet Med Assoc 1979;175:269–75.Google ScholarPubMed
Porter, H. Copper proteins in brain and liver in normal subjects and in cases of Wilson's disease. In: Bergsma, D, Scheinberg, I H, Sternlieb, I. Wilson's disease. Birth defects original article series. Vol. 4. New York: National Foundation–March of Dimes, 1968:23.Google Scholar
Reed, G B, Butt, E M, Landing, B H. Copper in childhood liver disease. A histologic, histochemical and chemical survey. Arch Pathol 1972;93:249–55.Google ScholarPubMed
Walshe, J M. Copper: its role in the pathogenesis of liver disease. Semin Liver Dis 1984;4:252–63.CrossRefGoogle ScholarPubMed
Ishmael, J, Gopinath, C, Howell, J M. Experimental chronic copper toxicity in sheep. Histological and histochemical changes during the development of lesions in the liver. Res Vet Sci 1971;12:358.Google ScholarPubMed
Sternlieb, I, Twedt, D C, Johnson, G F. Inherited copper toxicity of the liver in Bedlington terriers. Proc R Soc Med 1977;70(suppl 3):8–9.Google Scholar
Su, L-C, Owen, C A, Zollman, P E. A defect of biliary excretion of copper in copper-laden Bedlington terriers. Am J Physiol 1982;243:G231–6.Google Scholar
Wallin, M, Larsson, H, Edstrom, A. Tubulin sulfhydryl groups and polymerization in vitro. Effects of di- and trivalent cations. Exp Cell Res 1977;107:219–25.CrossRefGoogle ScholarPubMed
Aust, S D, Morehouse, L A, Thomas, C E. Role of metals in oxygen radical reactions. Free Rad Biol Med 1985;1:3–25.CrossRefGoogle ScholarPubMed
Parola, M, Robino, G, Marra, F. HNE interacts directly with JNK isoforms in human hepatic stellate cells. J Clin Invest 1998;102:1942–50.CrossRefGoogle ScholarPubMed
Lee, K S, Buck, M, Houglum, K. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 1995;96:2461–8.CrossRefGoogle ScholarPubMed
Meyers, B M, Kuntz, S M, LaRusso, N F. Alterations in the structure and physical properties of hepatic lysosomes in experimental metal overload [abstract]. Hepatology 1987;7:1045.Google Scholar
Sokol, R J, Devereaux, M, Mierau, G W. Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology 1990;99:1061–71.CrossRefGoogle ScholarPubMed
Sokol, R J. Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with copper overload. Gastroenterology 1993;105:178–87.CrossRefGoogle ScholarPubMed
Sokol, R J, Twedt, D, McKim, J M. Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994;107:1788–98.CrossRefGoogle ScholarPubMed
Mansouri, A, Gaou, I, Fromenty, B. Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease. Gastroenterology 1997;113:599–605.CrossRefGoogle ScholarPubMed
Sternlieb, I. Mitochondrial and fatty changes in hepatocytes of patients with Wilson's disease. Gastroenterology 1968;55:354–67.Google ScholarPubMed
Joshi, V V. Indian childhood cirrhosis. Perspect Pediatr Pathol 1987;11:175–92.Google ScholarPubMed
Coppen, D E, Richardson, D E, Cousins, R J. Zinc suppression of free radicals in cultures of rat hepatocytes by iron, t-butyl hydroperoxide, and 3-methylindole. Proc Soc Exp Biol Med 1988;189:100–9.CrossRefGoogle ScholarPubMed
Strand, S, Hofmann, W J, Grambihler, A. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 1998;4:588–93.CrossRefGoogle ScholarPubMed
Yamate, J, Kumagai, D, Tsujino, K. Macrophage populations and apoptotic cells in the liver before spontaneous hepatitis in Long-Evans Cinnamon (LEC) rats. J Comp Pathol 1999;120:333–46.CrossRefGoogle ScholarPubMed
Wilson, A K. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 1912;34:295.CrossRefGoogle Scholar
Hall, H C. La degenerescence hepato-lenticulaire: maladie de Wilson pseudo-sclerose.Paris: Masson, 1921:190.Google Scholar
Cumings, J N. The copper and iron content of brain and liver in the normal and in hepatolenticular degeneration. Brain 1948;71:410–15.CrossRefGoogle Scholar
Scheinberg, I H, Gitlin, D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson's disease). Science 1952;116:484–5.CrossRefGoogle Scholar
Walshe, J M. Penicillamine, a new oral therapy for Wilson's disease. Am J Med 1956;21:487–95.CrossRefGoogle ScholarPubMed
Sternlieb, I, Scheinberg, I H. Prevention of Wilson's disease in asymptomatic patients. N Engl J Med 1968;278:352–4.CrossRefGoogle ScholarPubMed
Walshe, J M. Treatment of Wilson's disease with trientine (triethylene tetramine) dihydrochloride. Lancet 1982;1:643–7.CrossRefGoogle ScholarPubMed
Sternlieb, I. Wilson's disease: indications for liver transplantation. Hepatology 1984;4(suppl):15–17.CrossRefGoogle Scholar
Bowcock, A M, Farrer, L A, Hebert, J M. Eight closely linked loci place the Wilson's disease locus within 13q14-q21. Am J Hum Genet 1988;43:664–74.Google ScholarPubMed
Honwen, R H J, Roberts, E A, Thomas, G R. DNA markers for the diagnosis of Wilson's disease. J Hepatol 1993;17:269–76.CrossRefGoogle Scholar
Frydman, M, Bonn-Tamir, B, Farrer, L A. Assignment of the gene for Wilson's disease to chromosome 13: linkage to the esterase D locus. Proc Natl Acad Sci U S A 1985;82:1819–21.CrossRefGoogle ScholarPubMed
Bowcock, A M, Farrer, L A, Cavalli-Sforza, L L. Mapping the Wilson disease locus to a cluster of linked polymorphic markers on chromosome 13. Am J Hum Genet 1987;14:27–35.Google Scholar
Petrukhin, K, Fischer, S G, Pirastu, M. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993;5:338–43.CrossRefGoogle ScholarPubMed
Bull, P C, Thomas, G R, Rommens, J M. The Wilson's disease gene is a putative copper transporting P-type ATPase similar to the Menkes' gene. Nat Genet 1993;5:327–37.CrossRefGoogle Scholar
Yamaguchi, Y, Heiny, M E, Gitlin, J D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson's disease. Biochem Biophys Res Commun 1993;197:271–7.CrossRefGoogle Scholar
Tanzi, R E, Petrukhin, K, Chernov, I. The Wilson's disease gene is a copper transporting ATPase with homology to the Menkes' disease gene. Nat Genet 1993;5:344–50.CrossRefGoogle Scholar
Vandarwarf, S M, Cooper, M L J, StetsenkoIV, et al IV, et al. Copper specifically regulates intracellular phosphorylation of the Wilson's disease protein, a human copper-transporting ATPase. J Biol Chem 2001;276:36289–94.CrossRefGoogle Scholar
Schaefer, M, Gitlin, J D. Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease. Am J Physiol 1999;276:G311–14.Google ScholarPubMed
Lutsenko, S, Petris, M J. Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol 2003;191:1–12.CrossRefGoogle ScholarPubMed
Cater, M A, Forges, J, LaFontaine, S. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 2004;380:805–13.CrossRefGoogle ScholarPubMed
Scheinberg, I H, Sternlieb, I. Wilson's disease. Philadelphia: WB Saunders, 1984.Google Scholar
Ala, A, Borjigin, J, Rochwarger, A, Schilsky, M. Wilson disease in septuagenarian siblings: Raising the bar for diagnosis. Hepatology 2005;41:668–70.CrossRefGoogle ScholarPubMed
Wilson, D C, Phillips, M J, Cox, D W, Roberts, E A. Severe hepatic Wilson's disease in preschool-aged children. J Pediatr 2000;137:719–22.CrossRefGoogle ScholarPubMed
Walshe, J M. The liver in Wilson's disease (hepatolenticular degeneration). In: Schiff, L, Schiff, E R. Diseases of the liver. Philadelphia: JB Lippincott, 1982:1037–50.Google Scholar
Tumer, Z, Moller, L B, Horn, N. Mutation spectrum of ATP7A, the gene defective in Menkes' disease. Adv Exp Med Biol 1999;448:83–95.CrossRefGoogle Scholar
Shah, A B, Chernov, I, Zhang, H T. Wilson's disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analysis. Am J Hum Genet 1997;61:317–28.CrossRefGoogle Scholar
Maier-Dobersberger, T, Mannhalter, C, Rack, S. Diagnosis of Wilson's disease in an asymptomatic sibling by DNA linkage analysis. Gastroenterology 1995;109:2015–18.CrossRefGoogle Scholar
Maier-Dobersberger, T, Ferenci, P, Polli, C. Detection of the His1069G/n mutations in Wilson's disease by rapid polymerase chain reaction. Ann Intern Med 1997;127:21–6.CrossRefGoogle Scholar
Matthews, W B. The absorption and excretion of radiocopper in hepatolenticular degeneration (Wilson's disease). J Neurol Neurosurg Psychiatry 1954;17:242–6.CrossRefGoogle Scholar
Beam, A G, Kunkel, H G. Metabolic studies in Wilson's disease using Cu. J Lab Clin Med 1955;45:623.Google Scholar
Sternlieb, I, Scheinberg, I H. Radiocopper in diagnosing liver disease. Semin Nucl Med 1972;2:176–88.CrossRefGoogle ScholarPubMed
Strickland, G T, Beckner, W M, Leu, M-L. Absorption of copper in homozygotes and heterozygotes for Wilson's disease and controls: isotope tracer studies with 61Cu and 64Cu. Clin Sci 1972;43:617–25.Google Scholar
Gibbs, K, Walshe, J M. Biliary excretion of copper in Wilson's disease. Lancet 1980;2:538–9.CrossRefGoogle ScholarPubMed
Sternlieb, I, Hamer, C J, Morell, A G. Lysosomal defect of hepatic copper excretion in Wilson's disease (hepatolenticular degeneration). Gastroenterology 1973;64:99–105.Google Scholar
Koschinsky, M L, Funk, W D, Vanoost, B A. Complete cDNA sequence of human preceruloplasmin. Proc Natl Acad Sci U S A 1986;83:5086–90.CrossRefGoogle ScholarPubMed
Czaja, M J, Weiner, F R, Schwarzenberg, S J. Molecular studies of ceruloplasmin deficiency in Wilson's disease. J Clin Invest 1987;80:1200–4.CrossRefGoogle ScholarPubMed
Gitlin, J D. Aceruloplasminemia. Pediatr Res 1998;44:271–6.CrossRefGoogle ScholarPubMed
Logan, J I, Harveyson, K B, Wisdom, G B. Hereditary ceruloplasmin deficiency, dementia, and diabetes mellitus. Q J Med 1994;87:663–70.Google Scholar
Harris, Z L, Durley, A P, Man, T K. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 1999;96:10812–17.CrossRefGoogle ScholarPubMed
Gibbs, K, Walshe, J M. A study of the ceruloplasmin concentrations found in 75 patients with Wilson's disease. Their kinships and various control groups. Q J Med 1979;48:447–63.Google ScholarPubMed
Steindl, P, Ferenci, P, Dienes, H P. Wilson's disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology 1997;113:212–18.CrossRefGoogle ScholarPubMed
Stremmel, W, Meyerrose, K-W, Niederau, C. Wilson's disease: clinical presentation, treatment, and survival. Ann Intern Med 1991;115:720–6.CrossRefGoogle Scholar
Oder, W, Grimm, G, Kollegger, H. Neurological and neuropsychiatric spectrum of Wilson's disease: a prospective study of 45 cases. J Neurol 1991;238:281–7.Google ScholarPubMed
Scheinberg, I H, Sternlieb, I. The long-term management of hepatolenticular degeneration. Am J Med 1960;29:316–33.CrossRefGoogle ScholarPubMed
Wu, J, Forbes, J R, Shiene Chen, H. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson's disease gene. Nat Genet 1994;7:541–5.CrossRefGoogle Scholar
Schilsky, M L, Stockert, R J, Sternlieb, I. Pleiotropic effect of the LEC mutation: a rodent model of Wilson's disease. Am J Physiol 1994;266:G907–13.Google ScholarPubMed
Tao, Y T, Gitlin, J D. Hepatic copper metabolism: insights from genetic disease. Hepatology 2003;37:1241–7.CrossRefGoogle ScholarPubMed
Nagano, K, Nakamura, K, Urakami, K I. Intracellular distribution of the Wilson's disease gene product (ATPase 7B) after in vitro and in vivo exogenous expression in hepatocytes from the LEC rat, an animal model of Wilson's disease. Hepatology 1998;27:799–807.CrossRefGoogle Scholar
Forbes, J R, His, G, Cox, D W. Role of the copper-binding domain in the copper transport function of ATP7B proteins. Hum Mol Genet 2000;9:127–35.Google Scholar
Harry, J, Tripathi, R. Kayser-Fleischer ring: a pathologic study. Br J Ophthalmol 1980;54:794–800.Google Scholar
Johnson, R E, Campbell, R J. Wilson's disease. Electron microscopic, x-ray energy spectroscopic, and atomic absorption spectroscopic studies of corneal copper deposition and distribution. Lab Invest 1982;46:564–9.Google ScholarPubMed
Wiebers, D O, Hollenhorst, R W, Goldstein, N P. The ophthalmologic manifestations of Wilson's disease. Mayo Clin Proc 1977;52:409–16.Google ScholarPubMed
Demirkiran, M, Jankovic, J, Lewis, R A, Cox, D W. Neurologic presentation of Wilson Disease without Kayser-Fleischer rings. Neurology 1996;46:1040–3.CrossRefGoogle ScholarPubMed
Fleming, C R, Dickson, E R, Hollenhorst, R W. Pigmented corneal rings in a patient with primary biliary cirrhosis. Gastroenterology 1975;69:220–5.Google Scholar
Fleming, C R, Dickson, E R, Walmer, H W. Pigmented corneal rings in non-Wilsonian liver disease. Ann Intern Med 1977;86:285–8.CrossRefGoogle ScholarPubMed
Jones, E A, Rabin, L, Buckley, C H. Progressive intrahepatic cholestasis of infancy and childhood. A clinicopathological study of a patient surviving to the age of 18 years. Gastroenterology 1976;71:675–82.Google ScholarPubMed
Rimola, A, Bruguera, M, Rodes, J. Kayser-Fleischer–like rings in cryptogenic cirrhosis. Arch Intern Med 1978;138:1857–8.CrossRefGoogle ScholarPubMed
Kaplinsky, C, Sternlieb, I, Javitt, N. Familial cholestatic cirrhosis associated with Kayser-Fleischer rings. Pediatrics 1980;65:782–8.Google ScholarPubMed
Dunn, L L, Annable, W L, Kliegman, R M. Pigmented corneal rings in neonates with liver disease. J Pediatr 1987;110:771–6.CrossRefGoogle ScholarPubMed
Cairns, J E, Williams, B P, Walshe, J M. “Sunflower cataract” in Wilson's disease. BMJ 1969;3:95–6.CrossRefGoogle Scholar
Rosenthal, A R, Marmor, M F, Levenberger, P L. Chalcosis: a study of natural history. Ophthalmology 1979;86:1956–72.CrossRefGoogle ScholarPubMed
Silverberg, M, Gellis, S S. The liver in juvenile Wilson's disease. Pediatrics 1962;30:402–13.Google ScholarPubMed
Chalmers, T C, Iber, F L, Uzman, L L. Hepatolenticular degeneration (Wilson's disease) as a form of idiopathic cirrhosis. N Engl J Med 1957;256:235–42.CrossRefGoogle ScholarPubMed
Sokol, R J, Francis, P O, Gold, S H. Orthotopic liver transplantation for acute fulminant Wilson's disease. J Pediatr 1985;107:549–52.CrossRefGoogle Scholar
Forbes, J R, Cox, D W. Functional characterization of missense mutations in ATP7B: Wilson's disease mutation or normal variant?Am J Hum Genet 1998;63:1663–74.CrossRefGoogle Scholar
Kraut, J R, Yogev, R. Fatal fulminant hepatitis with hemolysis in Wilson's disease. Clin Pediatr 1984;23:637–40.CrossRefGoogle ScholarPubMed
Adler, R, Mahnovski, V, Heuser, E T. Fulminant hepatitis: a presentation of Wilson's disease. Am J Dis Child 1977;131:870–2.CrossRefGoogle ScholarPubMed
Roche-Sicot, J, Benhamou, J-P. Acute intravascular hemolysis and acute liver failure associated as a first manifestation of Wilson's disease. Ann Intern Med 1977;86:301–3.CrossRefGoogle ScholarPubMed
Harnlyn, A N, Gollan, J L, Douglas, A P. Fulminant Wilson's disease with haemolysis and renal failure: copper studies and assessment of dialysis regimens. BMJ 1977;2:660–3.Google Scholar
Vielhauer, W, Eckadt, V, Holtertnuller, K H. D-penicillamine in Wilson's disease presenting as acute liver failure and hemolysis. Dig Dis Sci 1982;27:1126–9.CrossRefGoogle ScholarPubMed
Doering, E J, Savage, R A, Dittmer, T E. Hemolysis, coagulation defects, and fulminant hepatic failures: a presentation of Wilson's disease. Am J Dis Child 1979;133:440–1.Google Scholar
McCullough, A J, Wiesner, R H, Fleming, C R. Antemortem diagnosis and short-term survival of a patient with Wilson's disease presenting as fulminant hepatic failure. Dig Dis Sci 1984;9:862–4.CrossRefGoogle Scholar
Scheinberg, I H, Jaffe, M E, Sternlieb, I. The use of trientine in preventing the effects of interrupting penicillamine therapy in Wilson's disease. N Engl J Med 1987;317:209–13.CrossRefGoogle ScholarPubMed
Walshe, J M, Dixon, A K. Dangers of non-compliance in Wilson's disease. Lancet 1986;1:845–7.CrossRefGoogle ScholarPubMed
Sternlieb, I, Scheinberg, I H. Chronic hepatitis as a first manifestation of Wilson's disease. Ann Intern Med 1972;76:59–64.CrossRefGoogle ScholarPubMed
Perman, J A, Werlin, S L, Grand, R J. Laboratory measures of copper metabolism in the differentiation of chronic active hepatitis and Wilson's disease in children. J Pediatr 1979;94:564–8.CrossRefGoogle ScholarPubMed
Schilsky, M L, Scheinberg, I H, Sternlieb, I. Prognosis of Wilsonian chronic active hepatitis. Gastroenterology 1991;100:762–7.CrossRefGoogle ScholarPubMed
Scott, J, Gollan, J L, Samourian, S. Wilson's disease presenting as chronic active hepatitis. Gastroenterology 1978;74:645–51.Google ScholarPubMed
Santus-Silva, E E, Sarles, J, Buts, J P. Successful medical treatment of severely decompensated Wilson's disease. J Pediatr 1996;128:285–7.CrossRefGoogle Scholar
Czaja, A J. Natural history, clinical features, and treatment of autoimmune hepatitis. Semin Liver Dis 1984;4:1–12.CrossRefGoogle ScholarPubMed
Lashner, B A, Jones, R B, Tang, H S. Chronic hepatitis: disease factors at diagnosis predictive of mortality. Am J Med 1988;85:609–14.CrossRefGoogle ScholarPubMed
Taylor, W J, Jackson, E C, Jensen, W N. Wilson's disease, portal hypertension and extrahepatic vascular obstruction. N Engl J Med 1959;260:1160–4.CrossRefGoogle Scholar
Strickland, G T, Chang, N K, Beckner, W M. Hypersplenism in Wilson's disease. Gut 1972;13:220–4.CrossRefGoogle ScholarPubMed
Sternlieb, I, Scheinberg, I H, Walshe, J M. Bleeding esophageal varices in patients with Wilson's disease. Lancet 1970;1:638–41.CrossRefGoogle ScholarPubMed
Rosenfield, N, Grand, R J, Watkins, J B. Cholelithiasis and Wilson's disease. J Pediatr 1978;92:210–13.CrossRefGoogle Scholar
Walshe, J M, Waldenstrom, E, Sams, V. Abdominal malignancies in patients with Wilson's disease. Q J Med 2003;96:657–62.CrossRefGoogle ScholarPubMed
Lau, J Y N, Lai, C L, Wu, P C. Wilson's disease: 35 years' experience. Q J Med 1990;75:597–605.Google ScholarPubMed
Strickland, G T, Frommer, D, Leu, M-L. Wilson's disease in the United Kingdom and Taiwan. I. General characteristics of 142 cases and prognosis. II. A genetic analysis of 88 cases. Q J Med 1973;42:619–38.Google Scholar
Saito, T. Presenting symptoms and natural history of Wilson's disease. Eur J Pediatr 1987;146:261–5.CrossRefGoogle Scholar
Oder, W, Prayer, L, Grimm, G. Wilson's disease: evidence of subgroups derived from clinical findings and brain lesions. Nature 1993;43:120–4.Google ScholarPubMed
Starosta-Rubinstein, S, Young, A, Kluin, K. Clinical assessment of 31 patients with Wilson's disease. Correlations with structural changes on magnetic resonance imaging. Arch Neurol 1987;44:365–70.CrossRefGoogle ScholarPubMed
Park, R H R, McCabe, P, Fell, G S. Wilson's disease in Scotland. Gut 1991;32:1541–5.CrossRefGoogle ScholarPubMed
Walshe, J M, Gibbs, K R. Brain copper in Wilson's disease. Lancet 1987;2:1030.CrossRefGoogle ScholarPubMed
Medalia, A, Isaacs-Glaberman, K, Scheinberg, I H. Neuropsychological impairment in Wilson's disease. Arch Neurol 1988;45:502–4.CrossRefGoogle ScholarPubMed
Dening, T R, Berrios, G E, Walshe, J M. Wilson's disease and epilepsy. Brain 1988;111:1139–55.CrossRefGoogle ScholarPubMed
Goldstein, N P, Ewert, J C, Randall, R V. Psychiatric aspects of Wilson's disease (hepatolenticular degeneration): results of psychometric tests during long term therapy. Am J Psychiatry 1968;124:1555–61.CrossRefGoogle ScholarPubMed
Scheinberg, I H, Sternlieb, I, Richman, J. Psychiatric manifestations in patients with Wilson's disease. Birth Defects (Original Article Series) 1968;4:85.Google Scholar
Dening, T R, Berrios, G E. Wilson's disease: clinical groups in 400 cases. Acta Neurol Scand 1989;80:527–34.CrossRefGoogle ScholarPubMed
Uzman, L L, Denny-Brown, D. Amino-aciduria in hepatolenticular degeneration (Wilson's disease). Am J Med Sci 1948;215:599.CrossRefGoogle Scholar
Beam, A G, Tu, T F, Gutman, A B. Renal function in Wilson's disease. J Clin Invest 1957;36:1107.Google Scholar
Leu, M-L, Strickland, G T, Gutman, R A. Renal function in Wilson's disease: response to penicillamine therapy. Am J Med Sci 1970;260:381–98.CrossRefGoogle ScholarPubMed
Fulop, M, Sternlieb, I, Scheinberg, I H. Defective urinary acidification in Wilson's disease. Ann Intern Med 1968;68:770–7.CrossRefGoogle ScholarPubMed
Wiebers, D O, Wilson, D M, McLeod, R A. Renal stones in Wilson's disease. Am J Med 1979;67:249–54.CrossRefGoogle ScholarPubMed
Wilson, D M, Goldstein, N P. Bicarbonate excretion in Wilson's disease (hepatolenticular degeneration). Mayo Clin Proc 1974;49:394–400.Google Scholar
Walshe, J M. Effect of penicillamine on failure of renal acidification in Wilson's disease. Lancet 1968;1:775–8.CrossRefGoogle ScholarPubMed
Adams, D A, Goldman, R, Maxwell, M H. Nephrotic syndrome associated with penicillamine therapy of Wilson's disease. Am J Med 1964;36:330–6.CrossRefGoogle ScholarPubMed
Sternlieb, I, Bennett, B, Scheinberg, I H. D-penicillamine induced Goodpasture's syndrome in Wilson's disease. Ann Intern Med 1975;82:673–6.CrossRefGoogle ScholarPubMed
McIntyre, N, Clink, H M, Levi, A G. Hemolytic anemia in Wilson's disease. N Engl J Med 1967;276:439.CrossRefGoogle ScholarPubMed
Iser, J H, Stevens, B J, Stening, G F. Hemolytic anemia of Wilson's disease. Gastroenterology 1974;67:290–3.Google ScholarPubMed
Deiss, A, Lee, G R, Cartwright, G E. Hemolytic anemia in Wilson's disease. Ann Intern Med 1970;73:413–18.CrossRefGoogle ScholarPubMed
Forman, S J, Kumar, K S, Redeker, A G. Hemolytic anemia in Wilson's disease: clinical findings and biochemical mechanisms. Am J Hematol 1980;9:269–75.CrossRefGoogle ScholarPubMed
Owen, C A, Goldstein, N P, Bowie, E J. Platelet function and coagulation in patients with Wilson's disease. Arch Intern Med 1976;136:148–52.CrossRefGoogle Scholar
Hoagland, H C, Goldstein, N P. Hematologic (cytopenic) manifestations of Wilson's disease (hepatolenticular degeneration). Mayo Clin Proc 1978;53:498.Google Scholar
Factor, S M, Cho, S, Sternlieb, I. The cardiomyopathy of Wilson's disease. Myocardial alterations in nine cases. Virchows Arch [A] 1982;397:301–11.CrossRefGoogle ScholarPubMed
Kuan, P. Cardiac Wilson's disease. Chest 1987;91:579–83.CrossRefGoogle ScholarPubMed
Walshe, J M. Wilson's disease. The presenting symptoms. Arch Dis Child 1962;37:253–6.CrossRefGoogle ScholarPubMed
Mindelzun, R, Elkin, M, ScheinbergIH, et al IH, et al. Skeletal changes in Wilson's disease: a radiological study. Radiology 1970;94:127–32.CrossRefGoogle ScholarPubMed
Feller, E R, Schumacher, B R. Osteoarticular changes in Wilson's disease. Arthritis Rheum 1972;15:259–66.CrossRefGoogle ScholarPubMed
Golding, D N, Walshe, J M. Arthropathy of Wilson's disease. Study of clinical and radiological features in 32 patients. Ann Rheum Dis 1977;36:99–111.CrossRefGoogle ScholarPubMed
Menerey, K A, Eider, W, Brewer, G J. The arthropathy of Wilson's disease: clinical and pathologic features. J Rheumatol 1988;15:331–7.Google ScholarPubMed
Yu-Zhang, X, Xue-Zhe, Z, Xian-Hao, X. Radiologic study of 42 cases of Wilson's disease. Skel Radiol 1985;13:114–19.CrossRefGoogle Scholar
Leu, M L, Strickland, T, Wang, C C. Skin pigmentation in Wilson's disease. JAMA 1970;211:1542–3.CrossRefGoogle ScholarPubMed
Bearn, A G, McKusick, V A. Azure lunale. An unusual change in the fingernails in two patients with hepatolenticular degeneration (Wilson's disease). JAMA 1958;166:904–6.Google Scholar
Kaushansky, A, Frydman, M, Kaufman, H. Endocrine studies of the ovulatory disturbances in Wilson's disease (hepatolenticular degeneration). Fertil Steril 1987;47:270–3.CrossRefGoogle Scholar
Frydman, M, Kauschansky, A, Bonne-TamirB, et al B, et al. Assessment of the hypothalamic-pituitary-testicular function in male patients with Wilson's disease. J Androl 1991;12:180–4.Google ScholarPubMed
Johansen, K, Gregersen, G. Glucose intolerance in Wilson's disease. Normalization after treatment with penicillamine. Arch Intern Med 1972;129:587–90.CrossRefGoogle ScholarPubMed
Sulochana, G, Viswanathan, J. Wilson's disease with associated diabetes mellitus presenting as renal tubular acidosis. J Assoc Phys India 1982;30:405–7.Google ScholarPubMed
Lankisch, G, Kaboth, U, Koop, H. Involvement of the exocrine pancreas in Wilson's disease?Klin Wochenschr 1978;56:969.CrossRefGoogle ScholarPubMed
Carpenter, T O, Cames, D L, Anast, C S. Hypoparathyroidism in Wilson's disease. N Engl J Med 1983;309:873–7.CrossRefGoogle ScholarPubMed
McCullough, A J, Fleming, C R, Thistle, J L. Diagnosis of Wilson's disease presenting as fulminant hepatic failure. Gastroenterology 1983;84:161–7.Google ScholarPubMed
Berman, D H, Leventhal, R I, Gavaler, J S. Clinical differentiation of fulminant Wilsonian hepatitis from other causes of hepatic failure. Gastroenterology 1991;100:1129–34.CrossRefGoogle ScholarPubMed
Shaver, W A, Bhatt, H, Combes, B. Low serum alkaline phosphatase activity in Wilson's disease. Hepatology 1986;6:859–63.CrossRefGoogle ScholarPubMed
Willson, R A, Clayson, K J, Leon, S. Unmeasurable serum alkaline phosphatase activity in Wilson's disease associated with fulminant hepatic failure and hemolysis. Hepatology 1987;7:613–18.CrossRefGoogle ScholarPubMed
Ogihara, H, Ogihara, T, Miki, M. Plasma copper and antioxidant status in Wilson's disease. Pediatr Res 1995;37:219–26.CrossRefGoogle ScholarPubMed
Ferenci, P, Caca, K, Loudianos, G. Diagnosis and phenotypic classification of Wilson disease. Liver Int 2003;23:139–42.CrossRefGoogle ScholarPubMed
Edwards, C Q, Williams, D M, Cartwright, G E. Hereditary hypoceruloplasminemia. Clin Genet 1979;15:311–16.CrossRefGoogle ScholarPubMed
DaCosta, C M, Baldwin, D, Portmann, B. Value of urinary copper excretion after penicillamine challenge in the diagnosis of Wilson's disease. Hepatology 1992;15:609–15.CrossRefGoogle Scholar
Frommer, D J. Urinary copper excretion and hepatic copper concentrations in liver disease. Digestion 1981;21:169–78.CrossRefGoogle ScholarPubMed
Sanchez-Albisua, I, Garde, T, Hierro, L. A high index of suspicion: the key to an early diagnosis of Wilson's disease in childrenood. J Pediatr Gastroenterol Nutr 1999;28:186–90.CrossRefGoogle Scholar
Roberts, E A, Schilsky, M L. A practice guideline on Wilson disease. Hepatology 2003;37:1475–92.CrossRefGoogle ScholarPubMed
Martins da Costa, C, Baldwin, D, Protmann, B. Value of urinary copper excretion afrter penicillamine challenge in the diagnosis of Wilson's disease. Hepatology 1991;15:609–15.CrossRefGoogle Scholar
Gregorio, G V, Mieli-Vergani, G. Urinary copper excretion after penicillamine challenge in children with prolonged hepatitis A infection. Hepatology 1993;18:706–7.CrossRefGoogle ScholarPubMed
Sternlieb, I. Diagnosis of Wilson's disease. Gastroenterology 1978;74:787–9.Google ScholarPubMed
Matsuda, I, Pearson, T, Holtzman, N A. Determination of apoceruloplasmin by radioimmunoassay in nutritional copper deficiency, Menkes' kinky hair syndromes, Wilson's disease and umbilical cord blood. Pediatr Res 1976;8:821–4.CrossRefGoogle Scholar
Smallwood, R A, Williams, H A, Rosenoer, VM et al. Liver copper levels in liver disease: studies using neutron activation analysis. Lancet 1968;2:1310–13.CrossRefGoogle ScholarPubMed
Ferenci, P, Steindl-Munda, P, Vogel, W. Diagnostic value of quantitative hepatic copper determination in patients with Wilson's disease. Clin Gastroenterol Hepatol. 2005;3:811–18.CrossRefGoogle ScholarPubMed
Sternlieb, I, Scheinberg, I H. The role of radiocopper in the diagnosis of Wilson's disease. Gastroenterology 1979;77:138–42.Google Scholar
Sternlieb, I, Morell, A G, Bauer, C D. Detection of the heterozygous carrier of the Wilson's disease gene. J Clin Invest 1961;40:707–15.CrossRefGoogle Scholar
Cossu, P, Pirastu, M, Nucaro, A. Prenatal diagnosis of Wilson's disease by analysis of DNA polymorphisms. N Engl J Med 1992;327:57.Google Scholar
Sternlieb, I. The outlook for the diagnosis of Wilson's disease. J Hepatol 1993;17:263–4.CrossRefGoogle Scholar
Gollan, J L, Gollan, T J. Wilson disease in 1998: genetic, diagnostic and therapeutic aspects. J Hepatol 1998;28:28–36.CrossRefGoogle ScholarPubMed
Dixon, A K, Walshe, J M. Computed tomography of the liver in Wilson's disease. J Comput Assist Tomogr 1984;8:46–9.CrossRefGoogle Scholar
Smevik, B, Ritland, S, Nilsen, T. Liver attenuation values at computed tomography related to liver copper content. Scand J Gastroenterol 1982;17:461–3.CrossRefGoogle ScholarPubMed
Lawler, G A, Pennock, J M, Steiner, R E. Nuclear magnetic resonance (NMR) imaging in Wilson's disease. J Comput Assist Tomogr 1983;7:1–8.CrossRefGoogle Scholar
Frommer, D J. Direct measurement of serum non-ceruloplasmin copper in liver disease. Clin Chim Acta 1976;68:303–7.CrossRefGoogle Scholar
Schaffner, F, Sternlieb, I, Barka, T. Hepatocellular changes in Wilson's disease. Histochemical and electron microscopic studies. Am J Pathol 1962;41:315–28.Google ScholarPubMed
Anderson, P J, Popper, H. Changes in hepatic structure in Wilson's disease. Am J Pathol 1960;36:483–97.Google ScholarPubMed
Scheinberg, I H, Sternlieb, I. The liver in Wilson's disease. Gastroenterology 1959;37:550–64.Google ScholarPubMed
Johnson, R C, Ford, J W, Gebhart, R J. Chronic active hepatitis and cirrhosis in Wilson's disease. South Med J 1977;70:753–4.CrossRefGoogle ScholarPubMed
Sternlieb, I. The development of cirrhosis in Wilson's disease. Clin Gastroenterol 1975;4:367–79.Google ScholarPubMed
Stromeyer, F W, Ishak, H G. Histology of the liver in Wilson's disease. A study of 34 cases. Am J Clin Pathol 1980;73:12–24.CrossRefGoogle ScholarPubMed
Kamakura, K, Kimura, S, Igarashi, S. A case of Wilson's disease with hepatoma. J Jpn Soc Intern Med 1975;64:232–8.CrossRefGoogle ScholarPubMed
Buffet, C, Servent, L, Pelletier, G. Hepatocellular carcinoma in Wilson's disease. Gastroenterol Clin Biol 1984;8:681–2.Google ScholarPubMed
Guan, R, Oon, Cj, Wong, P K. Primary hepatocellular carcinoma associated with Wilson's disease in a young woman. Postgrad Med J 1985;61:357–9.CrossRefGoogle Scholar
Wilkinson, M L, Portmann, B, Williams, R. Wilson's disease and hepatocellular carcinoma: possible protective role of copper. Gut 1983;24:767–71.CrossRefGoogle ScholarPubMed
Salaspuro, M, Sipponen, P. Demonstration of an intracellular copper-binding protein by orcein staining in long-standing cholestatic liver diseases. Gut 1976;17:787–90.CrossRefGoogle ScholarPubMed
Evans, J, Newman, S P, Sherlock, S. Observations on copper-associated protein in childhood liver disease. Gut 1980;21:970–6.CrossRefGoogle ScholarPubMed
Jain, S, Scheuer, P J, Archer, B. Histological demonstration of copper and copper-associated protein in chronic liver disease. J Clin Pathol 1978;31:784–90.CrossRefGoogle Scholar
Goldfischer, S, Popper, H, Sternlieb, I. The significance of variations in the distribution of copper in liver disease. Am J Pathol 1980;99:715–30.Google ScholarPubMed
Guarascio, P, Yentis, F, Cevikbas, U. Value of copper-associated protein in diagnostic assessment of liver biopsy. J Clin Pathol 1983;36:18–23.CrossRefGoogle ScholarPubMed
Nartey, N O, Frei, J V, Cherian, M G. Hepatic copper and metallothionein distribution in Wilson's disease (hepatolenticular degeneration). Lab Invest 1987;57:397–401.Google Scholar
Sternlieb, I. Characterization of the ultrastructural. Changes of hepatocytes in Wilson's disease. Birth Defects (Original Article Series) 1968;4:92.Google Scholar
Sternlieb, I, Feldmann, G. Effects of anticopper therapy on hepatocellular mitochondria in patients with Wilson's disease. An ultrastructural and stereological study. Gastroenterology 1976;71:457–61.Google ScholarPubMed
Goldfischer, S, Sternlieb, I. Changes in the distribution of hepatic copper in relation to the progression of Wilson's disease (hepatolenticular degeneration). Am J Pathol 1968;53:883–901.Google Scholar
Williams, F J B, Walshe, J M. Wilson's disease. An analysis of the cranial computerized tomographic appearances found in 60 patients and the changes in response to treatment with chelating agents. Brain 1981;104:735–52.Google ScholarPubMed
Harik, S I, Donovan Post, M J. Computed tomography in Wilson's disease. Neurology 1981;31:107–10.CrossRefGoogle Scholar
Aisen, A M, Martel, W, Gabrielsen, T O. Wilson disease of the brain: MR imaging. Radiology 1985;157:137–41.CrossRefGoogle ScholarPubMed
Linne, T, Agartz, I, Saaf, J. Cerebral abnormalities in Wilson's disease as evaluated by ultra-low-field magnetic resonance imaging and computerized image processing. Magn Reson Imaging 1990;8:819–24.CrossRefGoogle ScholarPubMed
Schwarz, J, Antonini, A, Kraft, E. Treatment with D-penicillamine improves dopamine D2-receptor binding and T2-signal intensity in de novo Wilson's disease. Neurology 1994;44:1079–82.CrossRefGoogle ScholarPubMed
Kuwert, T, Hefter, H, Scholz, D. Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson's disease. Eur J Nucl Med 1992;19:96–101.CrossRefGoogle ScholarPubMed
Snow, B J, Bhatt, M, Martin, W R W. The nigrostriatal dopaminergic pathway in Wilson's disease with positron emission tomography. J Neurol Neurosurg Psychiatry 1991;54:12–17.CrossRefGoogle ScholarPubMed
Fujita, M, Hosoki, M, Miyazaki, M. Brainstem auditory evoked responses in spinocerebellar degeneration and Wilson's disease. Ann Neurol 1981;9:42–7.CrossRefGoogle Scholar
Roach, E S, Ford, C S, Spudis, E V. Wilson's disease: evoked potentials and computed tomography. J Neurol 1985;232:20–3.CrossRefGoogle ScholarPubMed
Grimm, G, Oder, W, Prayer, L. Evoked potentials in assessment and follow-up of patients with Wilson's disease. Lancet 1990;336:963–4.CrossRefGoogle ScholarPubMed
Chu, N S. Sensory evoked potentials in Wilson's disease. Brain 1986;109:491–507.CrossRefGoogle ScholarPubMed
Kattamis, C A, Tjortjatou, F. The hemolytic process of viral hepatitis in children with normal or deficient glucose-6-phosphate dehydrogenase activity. J Pediatr 1970;77:422–30.CrossRefGoogle ScholarPubMed
Sallie, R, Katsiyiannakis, L, Baldwin, D. Failure of simple biochemical indices to reliably differentiate fulminant Wilson's disease from other causes of fulminant hepatic failure. Hepatology 1992;16:1206–11.CrossRefGoogle Scholar
Bennan, D H, Leventhal, R I, Kiss, J. Plasmapheresis in the management of fulminant Wilson's disease. Gastroenterology 1989;96:A577.Google Scholar
Rakela, J, Kurtz, S B, McCarthy, J T. Fulminant Wilson's disease treated with post-dilution hemofiltration and orthotopic liver transplantation. Gastroenterology 1986;90:2004–7.CrossRefGoogle Scholar
Emre S, Atillasoy EQ, Ozdemir, S. Orthotopic liver transplantation for Wilsons disease: a single-center experience. Transplantation 2001;72:1232–6.Google Scholar
Schilsky, M L. Diagnosis and treatment of Wilson's disease. Pediatr Transplant 2002;6:15–19.CrossRefGoogle ScholarPubMed
Underwood, E J. Trace elements in human and animal nutrition. New York: Academic, 1971:57.Google Scholar
Brewer, G J, Askari, F, Lorincz, M T. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006;63:521–7.CrossRefGoogle Scholar
Scheinberg, I H, Sternlieb, I, Schilsky, M. Penicillamine may detoxify copper in Wilson's disease. Lancet 1987;2:95.CrossRefGoogle ScholarPubMed
Heilmaier, H E, Jiang, J L, Griem, H. D-penicillamine induces rat hepatic metallothionein. Toxicology 1986;42:23–31.CrossRefGoogle ScholarPubMed
Brewer, G J, Terry, C A, Aisen, A M, Hill, G M. Worsening of neurologic syndrome in patients with Wilson's disease with initial penicillamine therapy. Arch Neurol 1987;44:490–3.CrossRefGoogle ScholarPubMed
Walshe, J M, Yealland, M. Chelation treatment of neurological Wilson's disease. Q J Med 1993;86:197–204.Google ScholarPubMed
Marsden, C D. Wilson's disease. Q J Med 1987;65:959–66.Google ScholarPubMed
Pall, H S, Williams, A C, Blake, D R. Deterioration of Wilson's disease following the start of penicillamine therapy [letter]. Arch Neurol 1989;46:359–61.CrossRefGoogle Scholar
Saito, H, Watanabe, K, Sahara, M. Triethylene-tetramine (Trien) therapy for Wilson's disease. Tohoku J Exp Med 1991;164:29.CrossRefGoogle ScholarPubMed
Walshe, J M. Thiomolybdates in the treatment of Wilson's disease. Arch Neurol 1992;49:132–3.CrossRefGoogle ScholarPubMed
Lang, C J G, Rabas-Kolominsky, P, Engelhart, A. Fatal deterioration of Wilson's disease after institution of oral zinc therapy. Arch Neurol 1993;50:1007.CrossRefGoogle ScholarPubMed
Grand, R J, Vawter, G F. Juvenile Wilson's disease: histologic and functional studies during penicillamine therapy. J Pediatr 1975;87:1161–70.CrossRefGoogle ScholarPubMed
Marecek, Z, Heyrovsky, A, Volek, V. The effect of long term treatment with penicillamine on the copper content in the liver in patients with Wilson's disease. Acta Hepatol Gastroenterol 1975;22:292–6.Google ScholarPubMed
Sternlieb, I, Scheinberg, I H. Penicillamine therapy in hepatolenticular degeneration. JAMA 1964;189:748–54.CrossRefGoogle ScholarPubMed
Walshe, J M. Penicillamine and the SLE syndrome. J Rheumatol 1981;8(suppl 7):155–60.Google Scholar
Sternlieb, I, Fischer, M, Scheinberg, I H. Penicillamine-induced skin lesions. J Rheumatol 1981;8(suppl 7):149–54.Google Scholar
Pass, F, Goldfischer, S, Sternlieb, I. Elastosis perforans serpiginosa during penicillamine therapy for Wilson's disease. Arch Dermatol 1973;108:713–15.CrossRefGoogle Scholar
Miyagawa, S, Yoshioka, A, Hatoko, M. Systemic sclerosis-like lesions during long-term penicillamine therapy for Wilson's disease. Br J Dermatol 1987;116:95–100.CrossRefGoogle ScholarPubMed
Eisenberg, E, Ballow, M, Wolfe, S H. Pemphigus-like mucosal lesions: a side effect of penicillamine therapy. Oral Surg Oral Med Oral Pathol 1981;51:409–14.CrossRefGoogle ScholarPubMed
Menara, M, Aancan, L. Penicillamine hepatotoxicity in the treatment of Wilson's disease. J Pediatr Gastroenterol Nutr 1992;14:353.CrossRefGoogle ScholarPubMed
Dubois, R S, Rodgerson, D O, Hambidge, K M. Treatment of Wilson's disease with triethylene tetramine hydrochloride (Trientine). J Pediatr Gastroenterol Nutr 1990;10:77–81.CrossRefGoogle Scholar
Brewer, G J. Recognition, diagnosis, and management of Wilson's disease. Proc Soc Exp Biol Med. 2000;223:30–46.CrossRefGoogle ScholarPubMed
Brewer, G J, Johnson, V, Dick, R D. Treatment of Wilson's disease with ammonium tetrathiomolybdate. II. Initial therapy in 33 neurologically affected patients and follow up with zinc therapy. Arch Neurol 1996;53:1017–25.CrossRefGoogle ScholarPubMed
Mason, J. The biochemical pathogenesis of molybdenum-induced copper deficiency syndromes in ruminants: towards the final chapter. Ir Vet J 1990;43:18–21.Google Scholar
Mills, C F, El-Gallad, T T, Bremmer, I. Effects of molybdate, sulphide and tetrathiomolybdate on copper metabolism in rats. J Inorg Biochem 1981;14:189–207.CrossRefGoogle ScholarPubMed
Bremner I Mills, C F, Young, B W. Copper metabolism in rats given di or trithiomolybdates. J Inorg Biochem 182;16:109–19.CrossRefGoogle Scholar
Mills, C F, ElGallad, T T, Bremner I Weham, G. Copper and molybdenum absorption by rats given ammonium tetrahiomolybdate. J Inorg Biochem 1981;14:163–75.CrossRefGoogle Scholar
Gooneratne, S R, Howell, J M, Gawthorne, J M. An investigation of the effects of intravenous administration of thiomolybdate on copper metabolism in chronic Cu-poisoned sheep. Br J Nutr 181;46:469–80.CrossRefGoogle Scholar
Brewer, G J, Hedera, P, Kluin, K J. Treatment of Wilson disease with ammoniumtetrathiomolybdate. III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Arch Neurol 2003;60:379–85.CrossRefGoogle Scholar
Lipsky, M A, Gollan, J L. Treatment of Wilson's disease: in D-penicillamine we trust – what about zinc?Hepatology 1987;7:593–5.CrossRefGoogle ScholarPubMed
Hoogenraad, T U, Koevoet, R, Ruyter Korvr, E G. Oral zinc sulphate as long-term treatment in Wilson's disease (hepatolenticular degeneration). Eur Neurol 1979;18:205–11.CrossRefGoogle Scholar
Brewer, G J, Hill, G M, Prasad, A S. Oral zinc therapy for Wilson's disease. Ann Intern Med 1983;99:314–19.CrossRefGoogle ScholarPubMed
Caillie-Bertrand, M, Degenhart, H J, Visser, H K A. Oral zinc sulphate for Wilson's disease. Arch Dis Child 1985;60:656–9.CrossRefGoogle ScholarPubMed
Hill, G M, Brewer, G J, Prasad, A S. Treatment of Wilson's disease with zinc: 1. Oral zinc therapy regimens. Hepatology 1987;7:522–8.CrossRefGoogle Scholar
Hoogenraad, T U, Hattum, J, Hamer, C J A. Management of Wilson's disease with zinc sulphate. Experience in a series of 27 patients. J Neurol Sci 1987;77:137–46.CrossRefGoogle Scholar
Rossaro, L, Sturniolo, G C, Giacon, G. Zinc therapy in Wilson's disease: observations in five patients. Am J Gastroenterol 1990;85:665–8.Google ScholarPubMed
Roberts, E A, Cox, D W. Wilson's disease. Baillieres Clin Gastroenterol 1998;12:237–356.CrossRefGoogle Scholar
Sokol, R J, McKim, J M, Devereaux, M W. Alpha-tocopherol ameliorates oxidant injury in isolated copper overload rat hepatocytes. Pediatr Res 1996;39:259–63.CrossRefGoogle ScholarPubMed
Zeid, I, Perrault, J, Cox, D. Vitamin E in the treatment of Wilson's disease. J Pediatr Gastroenterol Nutr 1996;26:345.CrossRefGoogle Scholar
Schilsky, M L, Scheinberg, I H, Sternlieb, I. Liver transplantation for Wilson's disease: indications and outcome. Hepatology 1994;19:583–7.CrossRefGoogle ScholarPubMed
Mason, A L, Marsh, W, Alpers, D H. Intractable neurologic Wilson's disease treatment with orthotopic liver transplantation. Dig Dis Sci 1993;38:1746.CrossRefGoogle Scholar
Eghtesad, B, Nezakatgoo, N, Geraci, L C. Liver transplantation for Wilson's disease: a single-center experience. Liver Transpl Surg 1999;5:467–74.CrossRefGoogle ScholarPubMed
Asonuma, K, Inomata, Y, Kasahara, M. Living related liver transplantation from heterozygote genetic carriers to children with Wilson's disease. Pediatr Transplant 1999;3:201–5.CrossRefGoogle ScholarPubMed
Nazer, H, Ede, R J, Mowat, A P. Wilson's disease: clinical presentation and use of prognostic index. Gut 1986;27:1377–81.CrossRefGoogle ScholarPubMed
Dhawan, A, Taylor, R M, Cheeseman, P. Wilson's disease in children: 37-year experience and revised King's score for liver transplantation. Liver Transpl 2005;11:441–8.CrossRefGoogle ScholarPubMed
Cossack, Z T. The efficacy of oral zinc therapy as an alternative to penicillamine for Wilson's disease [letter]. N Engl J Med 1988;318:322–3.Google Scholar
Chin, R K H. Pregnancy and Wilson's disease [letter]. Am J Obstet Gynecol 1991;165:488.CrossRefGoogle Scholar
Sternlieb, I. Wilson's disease and pregnancy. Hepatology 2000;31:531–2.CrossRefGoogle Scholar
Linares, A, Zarranz, J J, Rodriguez-Alacron, J. Reversible cutis laxa due to maternal penicillamine treatment. Lancet 1979;2:43.CrossRefGoogle ScholarPubMed
Yarze, J C, Martin, P, Munoz, S J. Wilson's disease: current status. Am J Med 1992;92:643–54.CrossRefGoogle ScholarPubMed
Mjolnerod, I K, Rasmussen, K, Dormnerud, S A. Congenital connective tissue defect probably due to d-penicillamine treatment in pregnancy. Lancet 1971;1:673–6.CrossRefGoogle ScholarPubMed
Brewer, G J, Johnson, V D, Dick, R D. Treatment of Wilson's disease with zinc XVII: treatment during pregnancy. Hepatology 2000;31:364–70.CrossRefGoogle Scholar
Walshe, J M. The management of pregnancies in Wilson's disease. Q J Med 1986;58:81–7.Google ScholarPubMed
Scheinberg, I H, Sternlieb, I. Pregnancy in penicillamine-treated patients with Wilson's disease. N Engl J Med 1975;293:1300–2.CrossRefGoogle ScholarPubMed
Morris, J J, Seifter, E, Rettura, G. Effect of penicillamine upon wound healing. J Surg Res 1969;9:142–9.CrossRefGoogle Scholar
Tanner, M S, Portmann, B, Mowat, A P. Increased hepatic copper concentration in Indian childhood cirrhosis. Lancet 1979;1:1203–5.CrossRefGoogle ScholarPubMed
Tanner, M S. Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 1998;67(suppl):1074–81.CrossRefGoogle Scholar
Müller, T, Feichtinger, H, Berger, H. Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 1996;347:877–80.CrossRefGoogle Scholar
Mowat, A T. Liver disorders in childhood. London: Butterworths, 1987:294–7.Google Scholar
Nayak, N C, Ramalingaswammi, V. Indian childhood cirrhosis. Clin Gastroenterol 1975;4:333–49.Google ScholarPubMed
O'Neill, N C, Tanner, M S. Uptake of copper from brass vessels by bovine milk and its relevance to Indian childhood cirrhosis. J Pediatr Gastroenterol Nutr 1989;9:167–72.CrossRefGoogle ScholarPubMed
Bhave, S A, Pandit, A N, Tanner, M S. Comparison of feeding history of children with Indian childhood cirrhosis and paired controls. J Pediatr Gastroenterol Nutr 1987;6:562–7.CrossRefGoogle ScholarPubMed
Tanner, M S, Kantarjian, A H, Bhave, S A. Early introduction of copper-contaminated animal milk feeds as a possible cause of Indian childhood cirrhosis. Lancet 1983;2:992–5.CrossRefGoogle ScholarPubMed
Sethi, S, Grover, S, Khodaskar, M B. Role of copper in Indian childhood cirrhosis. Ann Trop Paediatr 1993;13:3–5.CrossRefGoogle ScholarPubMed
Adelson, J W. Indian childhood cirrhosis is a result of copper hepatotoxicity – in all likelihood. J Pediatr Gastroenterol Nutr 1987;6:491–2.Google ScholarPubMed
Kalra, V. Dietary copper and Indian childhood cirrhosis. Ind Pediatr 1986;23:399–401.Google ScholarPubMed
Wijmenga, C, Muller, T, Murli, I S. Endemic Tyrolean infantile cirrhosis is not an allelic variant of Wilson's disease. Eur J Hum Genet 1998;6:624–8.CrossRefGoogle Scholar
Hahn, S H, Brantly, M L, Oliver, C. Metallothionein synthesis and degradation in Indian childhood cirrhosis fibroblasts. Pediatr Res 1994;35:197–204.CrossRefGoogle ScholarPubMed
Hahn, S H, Tanner, M S, Danks, D M. Normal metallothionein synthesis in fibroblasts obtained from children with Indian childhood cirrhosis or copper-associated childhood cirrhosis. Biochem Mol Med 1995;54:142–5.CrossRefGoogle ScholarPubMed
Kapoor, S K, Singh, M, Ghai, O P. Study of serum copper and copper oxidase in patients with Indian childhood cirrhosis. Ind J Med Res 1971;59:115–21.Google ScholarPubMed
Bhave, S A, Pandit, A N, Pradhan, A M. Liver disease in India. Arch Dis Child 1982;57:922.CrossRefGoogle ScholarPubMed
Popper, H, Goldfischer, S, Sternlieb, I. Cytoplasmic copper and its toxic effects. Studies in Indian childhood cirrhosis. Lancet 1979;1:1205–8.CrossRefGoogle ScholarPubMed
Roy, S, Ramalingaswami, V, Nayak, N C. An ultrastructural study of the liver in Indian childhood cirrhosis with particular reference to the structure of cytoplasmic hyaline. Gut 1971;12:693–701.CrossRefGoogle ScholarPubMed
Bhagwat, A G, Walia, B N S, Koshy, A. Will the real Indian childhood cirrhosis please stand up?Cleve Clin Q 1983;50:323–37.CrossRefGoogle ScholarPubMed
Arora, N K, Nanda, S K, Gulati, S. Acute viral hepatitis types E, A and B singly and in combination in acute liver failure in children in North India. J Med Virol 1996;48:215–21.3.0.CO;2-B>CrossRefGoogle Scholar
Suryanarayan Rao, K, Madhavan, T V, Tulpule, P G. Incidence of toxigenic strains of Aspergillus flavus affecting ground nut crop in certain coastal districts of India. Ind J Med Res 1965;53:1196–201.Google Scholar
Amla, I, Kamala, C, Gopalakrishna, G S. Cirrhosis in children from peanut meal contaminated by alfatoxin. Am J Clin Nutr 1971;24:609–14.CrossRefGoogle Scholar
Tanner, M S, Mattocks, A R. Hypothesis: plant and fungal biocides, copper and Indian childhood cirrhosis. Ann Trop Paediatr 1987;7:264–9.CrossRefGoogle Scholar
Howell, J M, Deol, H S, Thomas, J B. Experimental copper and heliotrope intoxication in sheep: morphological changes. J Comp Pathol 1991;105:49–74.CrossRefGoogle ScholarPubMed
Aston, N S, Morris, P A, Tanner, M S. Retrorsine exacerbates liver damage from copper ingestion in neonatal rats [abstract]. Z Gastroenterol 1995;33:473.Google Scholar
Bras, G, Jelliffe, D B, Stuart, K L. Veno-occlusive disease of the liver with non-portal type of cirrhosis occurring in Jamaica. Arch Pathol 1954;57:285–300.Google Scholar
Tanner, M S, Bhave, S A, Pradham, A M. Clinical trials of penicillamine in Indian childhood cirrhosis. Arch Dis Child 1987;62:1118–24.CrossRefGoogle ScholarPubMed
Bhusnurmath, S R, Walia, B N, Singh, S. Sequential histopathologic alterations in Indian childhood cirrhosis treated with d-penicillamine. Hum Pathol 1991;22:653–8.CrossRefGoogle ScholarPubMed
Pradhan, A M, Bhave, A M, Joshi, V V. Reversal of Indian childhood cirrhosis by d-penicillamine. J Pediatr Gastroenterol Nutr 1995;20:28–35.CrossRefGoogle ScholarPubMed
Bavdekar, A R, Bhave, S A, Pradhan, A M. Long term survival in Indian childhood cirrhosis treated with d-penicillamine. Arch Dis Child 1996;74:32–5.CrossRefGoogle ScholarPubMed
Bhave, S A, Pandit, A N, Singh, S. The prevention of Indian childhood cirrhosis. Ann Trop Paediatr 1992;12:23–30.CrossRefGoogle ScholarPubMed
Superina, R A, Pearl, R H, Roberts, E A. Liver transplantation in children: the initial Toronto experience. J Pediatr Surg 1989;24:1013–19.CrossRefGoogle ScholarPubMed
Müller-Höcker, J, Weiss, M, Meyer, U. Fatal copper storage disease of the liver in a German infant resembling Indian childhood cirrhosis. Virchows Arch 1987;411:379–85.CrossRefGoogle Scholar
Walker-Smith, J A, Blomfield, J. Wilson's disease or chronic copper poisoning?Arch Dis Child 1973;48:476–9.CrossRefGoogle ScholarPubMed
Lefkowitch, J, Honig, C L, KingM, et al M, et al. Hepatic copper overload and features of Indian childhood cirrhosis in an American sibship. N Engl J Med 1982;307:271–7.CrossRefGoogle Scholar
Müller-Höcker, J, Meyer, U, Wiebecke, B. Copper storage disease of the liver and chronic dietary copper intoxication in two further German infants mimicking Indian childhood cirrhosis. Pathol Res Pract 1988;183:39–45.CrossRefGoogle ScholarPubMed
Maggiore, G, Giacomo, C, Sessa, F. Idiopathic hepatic copper toxicosis in a child. J Pediatr Gastroenterol Nutr 1987;6:980–3.CrossRefGoogle Scholar
Bartok, I, Szabo, L, Horvath, E. Juvenile Zirrhose mit hochgradiger kupferspeicherung in der Leber. Acta Hepatosplenol 1971;18:119–28.Google Scholar
Weiss, M, Müller-Höcker, J, Wiebecke, B. First description of “Indian childhood cirrhosis” in a non-Indian infant in Europe. Acta Paediatr Scand 1989;78:152–6.CrossRefGoogle Scholar
Adamson, M, Reiner, B, Olson, J L. Indian childhood cirrhosis in an American child. Gastroenterology 1992;102:1771–7.CrossRefGoogle Scholar
Dubois, R S, Giles, G, Rodgerson, D O. Orthotopic liver transplantation for Wilson's disease. Lancet 1991;1:505–8.Google Scholar
Aljajeh, I A, Mughal, S, Al-Tahou, B. Indian childhood cirrhosis-like liver disease in an Arab child. A brief report. Virchows Arch 1994;424:225–7.CrossRefGoogle Scholar
Horslen, S P, Tanner, M S, Lyon, T D B. Copper associated childhood cirrhosis. Gut 1994;35:1497–500.CrossRefGoogle ScholarPubMed
Baker, A, Gormally, S, Saxena, R. Copper-associated liver disease in childhood. J Hepatol 1995;23:538–43.CrossRefGoogle ScholarPubMed
Ludwig, J, Farr, G H, Freese, D K. Chronic hepatitis and hepatic failure in a 14-year-old girl. Hepatology 1996;22:1874–9.CrossRefGoogle Scholar
Lim, C T, Choo, K E. Wilson's disease in a 2 year old child. J Singapore Paediatr Soc 1979;21:99–102.Google Scholar
Bent, S, Bohm, K. Copper-induced liver cirrhosis in a 13-month-old boy. Gesundheitswesen 1995;57:667–9.Google Scholar
Valencia, M P, Gamboa, M J, Mediana, J. Copper overload and cirrhosis in four Mexican children [abstract]. Lab Invest 1993;68:10P.Google Scholar
Müller, T, Feichtinger, H, Berger, H. Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 1996;347:877–80.CrossRefGoogle Scholar
Scheinberg, I H, Sternlieb, I. Wilson's disease and idiopathic copper toxicosis. Am J Clin Nutr 1996;63(suppl):842–5.CrossRefGoogle Scholar
Müller, T, Müller, W, Feichtinger, H. Idiopathic copper toxicosis. Am J Clin Nutr 1998;67(suppl):1082–6.CrossRefGoogle Scholar
Müllendahl, K E, Lange, H. Copper and childhood cirrhosis. Lancet 1994;344:1515–16.CrossRefGoogle Scholar
Müller, T, Schöfer, H, Rodeck, B. Familial clustering of infantile cirrhosis in Northern Germany: a clue to the etiology of idiopathic copper toxicosis. J Pediatr 1999;135:189–96.CrossRefGoogle ScholarPubMed
Scheinberg, I H, Sternlieb, I. Is non-Indian childhood cirrhosis caused by excess dietary copper. Lancet 1994;344:1002–4.CrossRefGoogle ScholarPubMed
Giagheddu, A, Demelia, L, Puggioni, G. Epidemiologic study of hepatolenticular degeneration (Wilson's disease) in Sardinia (1902–1983). Acta Neurol Scand 1985;72:43–55.CrossRefGoogle Scholar
Dobyns, W B, Goldstein, N P, Gordon, H. Clinical spectrum of Wilson's disease (hepatolenticular degeneration). Mayo Clin Proc 1979;54:35–42.Google Scholar
Aksoy, M, Erdem, S. Wilson's disease in Turkey, a review of 49 cases in 41 families. New Istanbul Contrib Clin Sci 1975;11:92–7.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Copper Metabolism and Copper Storage Disorders
    • By Judith A. O'Connor, M.D., Pediatric Gastroenterology, Sacred Heart Children's Hospital, Spokane, Washington, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Copper Metabolism and Copper Storage Disorders
    • By Judith A. O'Connor, M.D., Pediatric Gastroenterology, Sacred Heart Children's Hospital, Spokane, Washington, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Copper Metabolism and Copper Storage Disorders
    • By Judith A. O'Connor, M.D., Pediatric Gastroenterology, Sacred Heart Children's Hospital, Spokane, Washington, Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.028
Available formats
×