Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-25T19:14:41.792Z Has data issue: false hasContentIssue false

6 - Dental constraints in the early evolution of mammalian herbivory

Published online by Cambridge University Press:  22 October 2009

Hans-Dieter Sues
Affiliation:
Royal Ontario Museum
Get access

Summary

Introduction

The processing of plant food in mammals requires specialized mechanisms in order to sustain high rates of nutrient assimilation, and the evolution of herbivory in mammals can potentially be traced by examining changes in these structures. Conditions suitable for the preservation of soft tissues are exceedingly rare (Schaal and Ziegler 1993), and thus we cannot hope to trace the evolution of herbivory using structures of the stomach and intestinal tract. However, oral comminution of plant material is a nearly universal behavior among mammalian herbivores, owing to the problem of breaking down the plant cell walls composed of cellulose (Janis and Fortelius 1988). Fortunately, dental structures specialized for this purpose are well represented in the fossil record. One major group of Mesozoic mammals, the multituberculates, had already acquired masticatory mechanisms allowing herbivory (Hahn 1971; Krause 1982). However, the main mammalian radiation that led to modern herbivores probably occurred immediately following the extinction of the non-avian dinosaurs at the end of the Cretaceous. That event must have opened many niches that previously had been inaccessible to mammals, judging from the high taxonomic and morphological rates of evolution across the Cretaceous–Paleocene boundary (Sloan 1987).

This chapter examines the functional changes in the shapes of teeth in the two dominant groups of early Paleocene ungulates in North America, compares these with common Eocene ungulates, and considers the influence that tissue strength had on the directions of these changes. The results indicate that the changes were non-linear, apparently because of mechanical constraints that had to be overcome before the more efficient mastication characteristic of modern ungulates emerged.

Type
Chapter
Information
Evolution of Herbivory in Terrestrial Vertebrates
Perspectives from the Fossil Record
, pp. 144 - 167
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×