Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-03T22:02:42.444Z Has data issue: false hasContentIssue false

10 - Conjugated conducting polymers

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Introduction to conjugated conducting polymers

Historical background and applications

The history of conjugated conducting polymers or ‘synthetic metals’ can be traced back to 1862, when Letheby, a professor of chemistry in the College of London Hospital, reported the electrochemical synthesis of a ‘thick layer of dirty bluish-green pigment’ (presumably a form of ‘aniline black’ or poly(aniline)) by oxidation of aniline in sulfuric acid at a platinum electrode. However, widespread interest in these fascinating materials did not take place until after 1977, following the discovery of the metallic properties of poly(acetylene), which led to the award of the 2000 Nobel Prize in Chemistry to Shirakawa, Heeger and MacDiarmid. Since 1977, electroactive conducting polymers have been intensively investigated for their conducting, semiconducting and electrochemical properties. Numerous electronic applications have been proposed and some realised, including electrochromic devices (ECDs), electroluminescent organic light-emitting diodes (OLEDs), photovoltaic elements for solar-energy conversion, sensors and thin-film field-effect transistors.

Types of electroactive conducting polymers

Poly(acetylene), (CH)x, is the simplest form of conjugated conducting polymer, with a conjugated π system extending over the polymer chain. Its electrical conductivity exhibits a twelve order of magnitude increase when doped with iodine. However, due to its intractability and air sensitivity, poly(acetylene) has seen few applications and most research on conjugated conductive polymers has been carried out with materials derived from aromatic and heterocyclic aromatic structures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Letheby, H. XXIX. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc., 15, 1862, 161–3.CrossRefGoogle Scholar
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. and Heeger, A. J.Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun., 1977, 578–80.CrossRefGoogle Scholar
Chiang, C. K., Druy, M. A., Gau, S. C., Heeger, A. J., Louis, E. J., MacDiarmid, A. G., Park, Y. W. and Shirakawa, H.Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc., 100, 1978, 1013–15.CrossRefGoogle Scholar
Chiang, C. K., Fincher, C. R. jr, Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gan, S. C. and MacDiarmid, A. G.Electrical conductivity in doped polyacetylene. Phys. Rev. Lett., 39, 1977, 1098–101.CrossRefGoogle Scholar
MacDiarmid, A. G.Nobel lecture: synthetic metals: a novel route for organic polymers. Rev. Mod. Phys., 73, 2001, 701–12.CrossRefGoogle Scholar
Shirakawa, H., MacDiarmid, A. G. and Heeger, A. J.Focus article. Twenty-five years of conducting polymers. Chem. Commun., 2003, 1–4.CrossRefGoogle Scholar
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. and Holmes, A. B.Light-emitting diodes based on conjugated polymers. Nature (London), 347, 1990, 539–41.CrossRefGoogle Scholar
Kraft, A., Grimsdale, A. C. and Holmes, A. B.Electroluminescent conjugated polymers – seeing polymers in a new light. Angew, Chem., Int. Ed. Engl., 37, 1998, 403–28.3.0.CO;2-9>CrossRefGoogle Scholar
Brabec, C. J., Sariciftci, N. S. and Hummelen, J. C.Plastic solar cells. Adv. Funct. Mater., 1, 2001, 15–26.3.0.CO;2-A>CrossRefGoogle Scholar
McQuade, D. Tyler, Pullen, A. E. and Swager, T. M.Conjugated polymer-based chemical sensors. Chem. Rev., 100, 2000, 2537–74.CrossRefGoogle ScholarPubMed
Knobloch, A., Manuelli, A., Bernds, A. and Clemens, W.Fully printed integrated circuits from solution processable polymers. J. Appl. Phys., 96, 2004, 2286–91.CrossRefGoogle Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995, ch. 9.CrossRefGoogle Scholar
Heinze, J.Electronically conducting polymers. Top. Curr. Chem., 152, 1990, 1–47.CrossRefGoogle Scholar
Evans, G. P. In Gerischer, H. and Tobias, C. W. (eds.), Advances in Electrochemical Science and Engineering, Weinheim, VCH, 1990, vol. 1, pp. 1–74.CrossRefGoogle Scholar
Mastragostino, M. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, ch. 7.CrossRefGoogle Scholar
Roncali, J.Conjugated poly(thiophenes): synthesis, functionalization, and applications, Chem. Rev., 92, 1992, 711–38.CrossRefGoogle Scholar
Higgins, S. J.Conjugated polymers incorporating pendant functional groups – synthesis and characterisation. Chem. Soc. Rev., 26, 1997, 247–57.CrossRefGoogle Scholar
Skotheim, T. A., Elsebaumer, R. L. and Reynolds, J. R. (eds.), Handbook of Conducting Polymers, 2nd edn, New York, Marcel Dekker, 1998; Skotheim, T. A. and Reynolds, J. R. (eds.), Handbook of Conducting Polymers (3rd edn.) CRC Press, Taylor & Francis Group, Boca Raton, 2007.Google Scholar
Roncali, J.Electrogenerated functional conjugated polymers as advanced electrode materials. J. Mater. Chem., 9, 1999, 1875–93.CrossRefGoogle Scholar
Bard, A. J. and Faulkner, L. R. Electrode reactions with coupled homogeneous chemical reactions. In Electrochemical Methods: Fundamentals and Applications, 2nd edn, New York, Wiley, 2001, ch. 12, pp. 471–533.Google Scholar
Street, G. B., Clarke, T. C., Geiss, R. H., Lee, V. Y., Nazzal, A. I., Pfluger, P. and Scott, J. C.Characterization of polypyrrole. J. Phys., 44(C3), 1983, 599–606.Google Scholar
Ferraris, J. P., Henderson, C., Torres, D. and Meeker, D.Synthesis, spectroelectrochemistry and application in electrochromic devices of n-dopable and p-dopable conducting polymer. Synth. Met., 72, 1995, 147–52.CrossRefGoogle Scholar
Wegner, G.The state of order and the relevance of phase transitions in conducting polymers. Mol. Cryst. Liq. Cryst., 106, 1984, 269–88.CrossRefGoogle Scholar
Gazard, M. Application of polyheterocycles to electrochromic display devices. In Skotheim, T. A. (ed.), Handbook of Conducting Polymers, New York, Marcel Dekker, 1986, vol. 1, ch. 19.Google Scholar
Mastragostino, M. Electrochromic devices. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, ch. 7.CrossRefGoogle Scholar
Hyodo, K.Electrochromism of conducting polymers. Electrochim. Acta, 39, 1994, 265–72.CrossRefGoogle Scholar
Mortimer, R. J.Organic electrochromic materials. Electrochim. Acta, 44, 1999, 2971–81.CrossRefGoogle Scholar
Mortimer, R. J. Electrochromic polymers. In Kroschwitz, J. I. (ed.), Encyclopedia of Polymer Science & Technology, 3rd edn, New York, John Wiley & Sons, 2004, vol. 9, pp. 591–614.Google Scholar
Sonmez, G.Polymeric electrochromics. Chem. Commun., 2005, 5251–9.CrossRefGoogle ScholarPubMed
Mortimer, R. J., Dyer, A. L. and Reynolds, J. R.Electrochromic organic and polymeric materials for display applications. Displays, 27, 2006, 2–18.CrossRefGoogle Scholar
Barbarella, G., Melucci, M. and Sotgiu, G.The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater., 17, 2005, 1581–93.CrossRefGoogle Scholar
Mastragostino, M., Arbizzani, C., Bongini, A., Barbarella, G. and Zambianchi, M.Polymer-based electrochromic devices, 1: poly(3-methylthiophenes). Electrochim. Acta, 38, 1993, 135–40.CrossRefGoogle Scholar
Kirchmeyer, S. and Reuter, K.Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem., 15, 2005, 2077–88.CrossRefGoogle Scholar
Giglioti, M., Trivinho-Strixino, F., Matsushima, J. T., Bulhões, L. O. S. and Pereira, E. C.Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films. Sol. Energy Mater., Sol. Cells, 82, 2004, 413–420.CrossRefGoogle Scholar
Galal, A., Cunningham, D. D., Karagözler, A. E., Lewis, E. T., Nkansah, A., Burkhardt, A., Ataman, O. Y., Zimmer, H. and Mark, H. B.Electrochemical synthesis, characterization and spectroelectrochemical studies of some conducting poly(heterolene) films. Proc. Electrochem. Soc., 90–2, 1990, 179–91.Google Scholar
Mastragostino, M., Arbizzani, C., Ferloni, P. and Marinangeli, A.Polymer-based electrochromic devices, Solid State Ionics, 53–56, 1992, 471–8.CrossRefGoogle Scholar
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J. R.Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 12, 2000, 481–94.3.0.CO;2-C>CrossRefGoogle Scholar
Groenendaal, L., Zotti, G., Aubert, P.-H., Waybright, S. M. and Reynolds, J. R.Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater., 15, 2003, 855–79.CrossRefGoogle Scholar
Jonas, F. and Schrader, L.Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 41–3, 1991, 831–6.CrossRefGoogle Scholar
Heywang, G. and Jonas, F.Poly(alkylenedioxythiophene)s – new, very stable conducting polymers. Adv. Mater., 4, 1992, 116–18.CrossRefGoogle Scholar
Roncali, J., Blanchard, P. and Frère, P.3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem., 15, 2005, 1598–610.CrossRefGoogle Scholar
Sapp, S. A., Sotzing, G. A. and Reynolds, J. R.High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater., 10, 1998, 2101–8.CrossRefGoogle Scholar
Gaupp, C. L., Welsh, D. M. and Reynolds, J. R.Poly(ProDOT-Et-2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromol. Rapid Commun., 23, 2002, 885–9.3.0.CO;2-X>CrossRefGoogle Scholar
Welsh, D. M., Kumar, A., Meijer, E. W. and Reynolds, J. R.Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives. Adv. Mater., 11, 1999, 1379–82.3.0.CO;2-Q>CrossRefGoogle Scholar
Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. and Reynolds, J. R.Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem. Mater., 10, 1998, 896–902.CrossRefGoogle Scholar
Sankaran, B. and Reynolds, J. R.High-contrast electrochromic polymers from alkyl-derivatised poly(3,4-ethylenedioxythiophenes). Macromolecules, 30, 1997, 2582–8.CrossRefGoogle Scholar
Welsh, D. M., Kloeppner, L. J., Madrigal, L., Pinto, M. R., Thompson, B. C., Schanze, K. S., Abboud, K. A., Powell, D. and Reynolds, J. R.Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules, 35, 2002, 6517–25.CrossRefGoogle Scholar
Kumar, A. and Reynolds, J. R.Soluble alkyl-substituted poly(ethylenedioxythiophene)s as electrochromic materials. Macromolecules, 29, 1996, 7629–30.CrossRefGoogle Scholar
Reeves, B. D., Grenier, C. R. G., Argun, A. A., Cirpan, A., McCarley, T. D. and Reynolds, J. R.Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules, 37, 2004, 7559–69.CrossRefGoogle Scholar
Cirpan, A., Argun, A. A., Grenier, C. R. G., Reeves, B. D. and Reynolds, J. R.Electrochromic devices based on soluble and processable dioxythiophene polymers. J. Mater. Chem., 13, 2003, 2422–8.CrossRefGoogle Scholar
Sotzing, G. A., Reynolds, J. R. and Steel, P. J.Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem. Mater., 8, 1996, 882–9.CrossRefGoogle Scholar
Sotzing, G. A., Reddinger, J. L., Katritzky, A. R., Soloducho, J., Musgrave, R. and Reynolds, J. R.Multiply colored electrochromic carbazole-based polymers. Chem. Mater., 9, 1997, 1578–87.CrossRefGoogle Scholar
Irvin, J. A., Schwendeman, I., Lee, Y., Abboud, K. A. and Reynolds, J. R.Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. J. Polym. Sci. Polym. Chem., 39, 2001, 2164–78.CrossRefGoogle Scholar
Gaupp, C. L. and Reynolds, J. R.Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules, 36, 2003, 6305–15.CrossRefGoogle Scholar
Dubois, C. J., Abboud, K. A. and Reynolds, J. R.Electrolyte-controlled redox conductivity in n-type doping in poly(bis-EDOT-pyridine)s. J. Phys. Chem. B, 108, 2004, 8550–7.CrossRefGoogle Scholar
Dubois, C. J., Larmat, F., Irvin, D. J. and Reynolds, J. R.Multi-colored electrochromic polymers based on BEDOT-pyridines. Synth. Met., 119, 2001, 321–2.CrossRefGoogle Scholar
Sonmez, G., Shen, C. K. F., Rubin, Y. and Wudl, F.A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era. Angew. Chem. Int. Ed. Eng., 43, 2004, 1498–502.CrossRefGoogle ScholarPubMed
Sonmez, G., Sonmez, H. B., Shen, C. K. F. and Wudl, F.Red, green and blue colors in polymeric electrochromics. Adv. Mater., 16, 2004, 1905–8.CrossRefGoogle Scholar
Sonmez, G. and Wudl, F.Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem., 15, 2005, 20–2.CrossRefGoogle Scholar
Sonmez, G., Sonmez, H. B., Shen, C. K. F., Jost, R. W., Rubin, Y. and Wudl, F.A processable green polymeric electrochromic. Macromolecules, 38, 2005, 669–75.CrossRefGoogle Scholar
Rauh, R. D., Peramunage, D. and Wang, F.Electrochemistry and electrochromism in star conductive polymers. Proc. Electrochem. Soc., 2003–17, 2003, 176–81.Google Scholar
Rauh, R. D., Wang, F., Reynolds, J. R. and Meeker, D. L.High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 46, 2001, 2023–9.CrossRefGoogle Scholar
Wang, F., Wilson, M. S., Rauh, R. D., Schottland, P., Thompson, B. C. and Reynolds, J. R.Electrochromic linear and star branched poly(3,4-ethylenedioxythiophene-didodecyloxybenzene) polymers. Macromolecules, 33, 2000, 2083–91.CrossRefGoogle Scholar
Wang, F., Wilson, M. S., Rauh, R. D., Schottland, P. and Reynolds, J. R.Electroactive and conducting star-branched poly(3-hexylthiophene)s with a conjugated core. Macromolecules, 32, 1999, 4272–8.CrossRefGoogle Scholar
Genies, E. M., Bidan, G. and Diaz, A. F.Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem., 149, 1983, 103–13.CrossRefGoogle Scholar
Diaz, A. F., Castillo, J. I., Logan, J. A. and Lee, W. I.Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem., 129, 1981, 115–32.CrossRefGoogle Scholar
Wong, J. Y., Langer, R. and Ingber, D. E.Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA, 91, 1994, 3201–4.CrossRefGoogle ScholarPubMed
Schottland, P., Zong, K., Gaupp, C. L., Thompson, B. C., Thomas, C. A., Giurgiu, I., Hickman, R., Abboud, K. A. and Reynolds, J. R.Poly(3,4-alkylenedioxypyrrole)s: highly stable electronically conducting and electrochromic polymers. Macromolecules, 33, 2000, 7051–61.CrossRefGoogle Scholar
Gaupp, C. L., Zong, K. W., Schottland, P., Thompson, J. R., Thomas, C. A. and Reynolds, J. R.Poly(3,4-ethylenedioxypyrrole): organic electrochemistry of a highly stable electrochromic polymer. Macromolecules, 33, 2000, 1132–3.CrossRefGoogle Scholar
Sonmez, G., Schwendeman, I., Schottland, P., Zong, K. W. and Reynolds, J. R.N-substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules, 36, 2003, 639–47.CrossRefGoogle Scholar
Schwendeman, I., Hickman, R., Sonmez, G., Schottland, P., Zong, K., Welsh, D. M. and Reynolds, J. R.Enhanced contrast dual polymer electrochromic devices. Chem. Mater., 14, 2002, 3118–22.CrossRefGoogle Scholar
Diaz, A. F. and Logan, J. A.Electroactive polyaniline films. J. Electroanal. Chem., 111, 1980, 111–14.CrossRefGoogle Scholar
Kobayashi, T., Yoneyama, H. and Tamura, H.Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem., 161, 1984, 419–23.CrossRefGoogle Scholar
MacDiarmid, A. G. and Epstein, A. J.Polyanilines – a novel class of conducting polymers. Faraday Discuss. Chem. Soc., 88, 1989, 317–32.CrossRefGoogle Scholar
Ray, A., Richter, A. F., MacDiarmid, A. G. and Epstein, A. J.Polyaniline – protonation deprotonation of amine and imine sites. Synth. Met., 29, 1989, 151–6.CrossRefGoogle Scholar
Rourke, F. and Crayston, J. A.Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3 −/4 − ions. J. Chem. Soc., Faraday Trans., 89, 1993, 295–302.CrossRefGoogle Scholar
Hjertberg, T., Salaneck, W. R., Lundstrom, I., Somasiri, N. L. D. and MacDiarmid, A. G.A C-13 CP-MAS NMR investigation of polyaniline. J. Polym. Sci., Polym. Lett., 23, 1985, 503–8.CrossRefGoogle Scholar
Watanabe, A., Mori, K., Iwasaki, Y., Nakamura, Y. and Niizuma, S.Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 20, 1987, 1793–6.CrossRefGoogle Scholar
Mortimer, R. J.Spectroelectrochemistry of electrochromic poly(o-toluidine) and poly(m-toluidine) films. J. Mater. Chem., 5, 1995, 969–73.CrossRefGoogle Scholar
Ramirez, S. and Hillman, A. R.Electrochemical quartz crystal microbalance studies of poly(ortho-toluidine) films exposed to aqueous perchloric acid solutions. J. Electrochem. Soc., 145, 1998, 2640–7.CrossRefGoogle Scholar
Wang, L., Wang, Q. Q. and Cammarata, V.Electro-oxidative polymerization and spectroscopic characterization of novel amide polymers using diphenylamine coupling. J. Electrochem. Soc., 145, 1998, 2648–54.CrossRefGoogle Scholar
Stepp, J. and Schlenoff, J. B.Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers. J. Electrochem. Soc., 144, 1997, L155–7.CrossRefGoogle Scholar
DeLongchamp, D. and Hammond, P. T.Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv. Mater., 13, 2001, 1455–9.3.0.CO;2-7>CrossRefGoogle Scholar
Cutler, C. A., Bouguettaya, M. and Reynolds, J. R.PEDOT polyelectrolyte based electrochromic films via electrostatic adsorption. Adv. Mater., 14, 2002, 684–8.3.0.CO;2-7>CrossRefGoogle Scholar
Argun, A. A., Cirpan, A. and Reynolds, J. R.The first truly all-polymer electrochromic devices. Adv. Mater., 15, 2003, 1338–41.CrossRefGoogle Scholar
Mecerreyes, D., Marcilla, R., Ochoteco, E., Grande, H., Pomposo, J. A., Vergaz, R. and Pena, Sánchez J. M.A simplified all-polymer flexible electrochromic device. Electrochim. Acta, 49, 2004, 3555–9.CrossRefGoogle Scholar
Jang, G.-W., Chen, C. C., Gumbs, R. W., Wei, Y. and Yeh, J.-M.Large-area electrochromic coatings – composites of polyaniline and polyacrylate-silica hybrid set gel materials. J. Electrochem. Soc., 143, 1996, 2591–6.CrossRefGoogle Scholar
Shannon, K. and Fernandez, J. E.Preparation and properties of water-soluble, poly(styrene-sulfonic acid)-doped polyaniline. J. Chem. Soc., Chem. Commun., 1994, 643–4.CrossRefGoogle Scholar
Paoli, M. A., Duek, E. R. and Rodrigues, M. A.Poly(aniline) cellulose-acetate composites – conductivity and electrochromic properties. Synth. Met., 41, 1991, 973–8.CrossRefGoogle Scholar
Tassi, E. L., Paoli, M. A., Panero, S. and Scrosati, B.Electrochemical, electrochromic and mechanical-properties of the graft copolymer of polyaniline and nitrilic rubber. Polymer, 35, 1994, 565–72.CrossRefGoogle Scholar
Gao, Z., Bobacka, J., Lewenstam, A. and Ivaska, A.Electrochemical-behavior of polypyrrole film polymerized in indigo carmine solution. Electrochim. Acta, 39, 1994, 755–62.CrossRefGoogle Scholar
Li, Y. and Dong, S.Indigo-carmine-modified polypyrrole film electrode. J. Electroanal. Chem., 348, 1993, 181–8.CrossRefGoogle Scholar
Girotto, E. M. and Paoli, M. A.Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye. Adv. Mater., 10, 1998, 790–3.3.0.CO;2-R>CrossRefGoogle Scholar
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M.An electrochromic device based on polyaniline and Prussian blue. Adv. Mater., 4, 1992, 287–91.CrossRefGoogle Scholar
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M.A solid-state electrochromic device based on polyaniline, Prussian blue and an elastomeric electrolyte. Adv. Mater., 5, 1993, 650–2.CrossRefGoogle Scholar
Morita, M.Electrochromic behavior and stability of polyaniline composite films combined with Prussian blue. J. Appl. Poly. Sci., 52, 1994, 711–19.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Nodland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide. Electrochim. Acta, 38, 1993, 1497–500.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J. Electrochem. Soc., 140, 1993, 3560–4.CrossRefGoogle Scholar
Leventis, N. and Chung, Y. C.Polyaniline–Prussian blue novel composite-material for electrochromic applications. J. Electrochem. Soc., 137, 1990, 3321–2.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Correlation between light absorption and electric charge in solid state electrochromic windows. J. Appl. Electrochem., 29, 1999, 1103–10.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.CrossRefGoogle Scholar
Tung, T.-C. and Ho, K. C.A complementary electrochromic device containing 3,4-ethylenedioxythiophene and Prussian blue. Proc. Electrochem. Soc., 2003–17, 2003, 254–65.Google Scholar
Ferraris, J. P., Mudiginda, D. S. K., Meeker, D. L., Boehme, J., Loveday, D. C., Dan, T. M. and Brotherston, I. D. Color tailoring techniques for electroactive polymer-based electrochromic devices. Meeting Abstracts, volume 2003–01, Electrochromics Materials and Applications Symposium, at the 203rd Electrochemical Society Meeting, Paris, France, 27 April–2 May, 2003, Abstract No. 1329.
Thompson, B. C., Schottland, P., Zong, K. and Reynolds, J. R.In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater., 12, 2000, 1563–71.CrossRefGoogle Scholar
Thompson, B. C., Schottland, P., Sonmez, G. and Reynolds, J. R.In situ colorimetric analysis of electrochromic polymer films and devices. Synth. Met., 119, 2001, 333–4.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×