Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-23T10:02:50.146Z Has data issue: false hasContentIssue false

8 - Electromagnetic component/component instabilities in uniform plasmas

Published online by Cambridge University Press:  06 November 2009

S. Peter Gary
Affiliation:
Los Alamos National Laboratory
Get access

Summary

In this chapter we continue to study electromagnetic fluctuations in homogeneous, magnetized, collisionless plasmas. The new element here is that we consider the zeroth-order distribution function of each plasma component to be Maxwellian with drift velocity v0j parallel or antiparallel to B0 (Equation (3.1.3)). If two components have a relative drift v0 greater than some threshold, the corresponding free energy can lead to instability growth. Section 8.1 outlines the derivation of the dispersion equation for this case; Section 8.2 discusses electromagnetic ion/ion instabilities; Section 8.3 addresses electromagnetic electron/electron instabilities; Section 8.4 considers electromagnetic electron/ion instabilities; and Section 8.5 examines the consequences of electromagnetic effects on ion/ion instabilities that are electrostatic in the limit of zero β. Section 8.6 is a brief summary.

Space plasma heating and acceleration processes typically act on both species and are likely to give rise to beam/core distributions for both electrons and ions. However, in contrast to the case of Tj > Tj discussed in the previous chapter, the instabilities driven by beam/core free energies do not clearly separate into low frequency ion-driven and high frequency electron-driven modes. Thus, although we treat relative ion drifts and relative electron drifts separately in this chapter, this separation is due more to our desire to clarify the presentation than to any compelling physical arguments. Thus, in Sections 8.2 through 8.5, we consider a two-species, three-component plasma consisting of a relatively tenuous beam (denoted by subscript b), a relatively dense core (c), and a third component of the other species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×