Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T01:06:47.878Z Has data issue: false hasContentIssue false

8 - Respiration in air breathing vertebrates: optimization and efficiency in design and function

Published online by Cambridge University Press:  03 October 2009

Robert W. Blake
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

INTRODUCTION

Efficiency, loosely defined, describes the ease with which a system performs its requisite tasks. By its more strict definition, it describes the ratio of the work produced by a system to the work expended on the system in performing that task. Several papers in this collection argue that the term ‘efficiency’ should be reserved only for the latter case. The former definition is more appropriately referred to as the effectiveness of the system. Thus, the efficiency of a respiratory system will refer only to the ratio of the mechanical work produced by the respiratory pump to the oxidative cost of producing that work. The effectiveness of this performance will also be a function of the many factors which influence the amount of gas exchanged between the environment and the blood for any given level of ventilation. This too can be regarded in terms of an input/output relationship and thus the effectiveness of a respiratory system can be defined as the ratio of the millilitres of O2 exchanged during ventilation to the millilitres of O2 required to power ventilation. The respiratory systems found in vertebrates reflect multiple experiments in design which attempt to optimize gas exchange across the respiratory surfaces given both the respiratory and non-respiratory constraints placed on the systems. Adaptive changes can be found at all levels which contribute both to the effectiveness and efficiency of each system. In the following article, select examples will be used to illustrate some of the trends which optimize the diffusive and convective processes involved in gas exchange (anatomical adaptations and their mechanical consequences) as well as the manner in which they are linked (physiological and behavioural adaptations).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×