Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-09T19:07:32.892Z Has data issue: false hasContentIssue false

3 - American Options: Symmetry Properties

from Part one - Option Pricing: Theory and Practice

Published online by Cambridge University Press:  29 January 2010

E. Jouini
Affiliation:
Université Paris IX Dauphine and CREST
J. Cvitanic
Affiliation:
University of Southern California
Marek Musiela
Affiliation:
Parisbas, London
Get access

Summary

Introduction

Putcall symmetry (PCS) holds when the price of a put option can be deduced from the price of a call option by relabeling its arguments. For instance, in the context of the standard financial market model with constant coefficients the value of an American put equals the value of an American call with strike price S, maturity date T, in a financial market with interest rate δ and in which the underlying asset price pays dividends at the rate r. This result was originally demonstrated by McDonald and Schroder (1990, 1998) using a binomial approximation of the lognormal model and by Bjerksund and Stensland (1993) in the continuous time model using PDE methods; it is a version of the international putcall equivalence (Grabbe (1983)).

Put-call symmetry is a useful property of options since it reduces the computational burden in implementations of the model. Indeed, a consequence of the property is that the same numerical algorithm can be used to price put and call options and to determine their associated optimal exercise policy. Another benefit is that it reduces the dimensionality of the pricing problem for some payoff functions. Examples include exchange options and quanto options. PCS also provides useful insights about the economic relationship between contracts. Puts and calls, forward prices and discount bonds, exchange options and standard are simple examples of derivatives that are closely connected by symmetry relations.

Some intuition for PCS is based on the properties of the normal distribution. Indeed, in the model with constant coefficients the distribution of the terminal stock price is lognormal.

Type
Chapter
Information
Handbooks in Mathematical Finance
Option Pricing, Interest Rates and Risk Management
, pp. 67 - 104
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×