Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T03:21:48.235Z Has data issue: false hasContentIssue false

5 - The CO2 Fertilizing Effect: Relevance to the Global Carbon Cycle

from II - THE MISSING CARBON SINK

Published online by Cambridge University Press:  04 December 2009

T. M. L. Wigley
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
D. S. Schimel
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado
Get access

Summary

Abstract

The CO2 fertilizing effect on vegetation growth arises from primary effects of CO2 concentration on photosynthetic CO2 fixation, suppression of photorespiration (and possibly of dark respiration), and reduction in stomatal conductance. These mechanisms increase the efficiency of use of growth-restricting inputs of light, water, and nitrogen in the formation of dry matter. It is of critical significance that the C:N ratio of plant tissues varies considerably when CO2 is varied. The relative response of plant stand seasonal growth to high CO2 is typically similar to that which would be calculated on basic photosynthetic biochemical and stomatal diffusion grounds. Researchers are still determining the full extent of various negative and positive feedbacks and other factors that accentuate or attenuate the propagation of this primary response into the size of live and dead C pools. However, on the basis of present evidence it seems unjustified to assume that all such modifiers act to annul completely the primary stimulus of high CO2 in terms of increase in C pool sizes. Indeed, the likely magnitude of the CO2 fertilizing effect is such that it can comfortably account for the “missing carbon sink” of approximately 1–2 Gt C/yr, according to several independent terrestrial C cycle models.

For modeling the response of net primary production (NPP) to CO2, there are five approaches. The once common approach of assuming a flat response (i.e., nonresponse) above the preindustrial CO2 concentration of 280 μmol/mol is highly unlikely to be correct.

Type
Chapter
Information
The Carbon Cycle , pp. 77 - 92
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×