Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T11:02:51.977Z Has data issue: false hasContentIssue false

5 - Ordinary Differential Equations: Reaction Mechanisms and Other Local Phenomena

Published online by Cambridge University Press:  09 October 2009

Elaine S. Oran
Affiliation:
Naval Research Laboratory, Washington DC
Jay P. Boris
Affiliation:
Naval Research Laboratory, Washington DC
Get access

Summary

Coupled sets of ordinary differential equations (ODEs) are used to describe the evolution of the interactions among chemical species as well as many other local processes. ODEs appear, for example, when spectral and other expansion methods are used to solve timedependent partial differential equations. In these cases, spatial derivatives are converted to algebraic relationships leaving ODEs to be integrated in time. ODEs also describe the motions of projectiles and orbiting bodies, population dynamics, electrical circuits, local temperature equilibration, momentum interchange among phases in multiphase flows, the decomposition of radioactive material, and energy level and species conversion processes in atomic, molecular, and nuclear physics.

Algorithms for integrating ODEs were not originally derived by numerical analysts or applied mathematicians, but by scientists interested in solving specific sets of equations for their particular applications. Bashforth and Adams (1883), for example, developed a method for solving the equations describing capillary action. One of the first algorithms to cope with the difficulties of integrating stiff ODEs was suggested by Curtiss and Hirschfelder (1952) for chemical kinetics studies. Ten years after Curtiss and Hirschfelder identified the stiffness problem in ODEs, Dahlquist (1963) identified numerical instability as the cause of the difficulty and provided basic definitions and concepts that are still helpful in classifying and evaluating algorithms. The importance of the practical applications has spurred active research in developing and testing integration methods for solving coupled ODEs. Continued efforts of applied mathematicians have put the numerical solution of ODEs on a sounder theoretical basis and have provided insights into the constraints imposed by stability, convergence, and accuracy requirements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×