Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T03:07:50.306Z Has data issue: false hasContentIssue false

4 - Gravity flow of groundwater: a geologic agent

Published online by Cambridge University Press:  31 July 2009

József Tóth
Affiliation:
University of Alberta
Get access

Summary

Introduction

Chapter 4 is intended to advance the view that moving groundwater is the common basic cause of a wide variety of natural processes and phenomena and hence it should be regarded as a general geologic agent.

That groundwater plays an active role in certain geologic processes has been recognized in numerous earth-science subdisciplines for a long time. However, the generality of this role was not appreciated until the 1960s and 1970s, when the underlying common cause itself was sufficiently understood to allow, and indeed to stimulate, dedicated studies of its broader ramifications. That cause was the gravity-driven basinal flow of groundwater. Even during this period, however, the generalization of groundwater's role in nature was hindered by at least two factors. First, the diversity of natural phenomena related to groundwater flow effectively conceals a single common cause. Second, a lack of knowledge, or even awareness, of basinal groundwater hydraulics among specialists of various other disciplines prevents them from recognizing the cause-and-effect relation between regional groundwater flow and the particular phenomena of their interest. By way of illustrating the difficulty of envisaging a common origin, suffice only to list such diverse, and indeed in some cases disparate, natural phenomena generated and/or fundamentally shaped by groundwater flow as: soil salinization, continental salt deposits, regional patterns of groundwater's chemical composition, soil liquefaction, gullying, landslides, dry-land ice fields, geysers, positive and negative geothermal anomalies, lake eutrophication, base-flow characteristics of streams, bog- vs. fen-type wetlands, type and quality of plant species and associations, taliks in permafrost, roll-front and tabular uranium deposits, dolomitization of limestones, karst morphology, diagenesis of certain clay minerals, some sulfide-ore deposits, and certain types of hydrocarbon accumulations.

Type
Chapter
Information
Gravitational Systems of Groundwater Flow
Theory, Evaluation, Utilization
, pp. 91 - 127
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×