Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-09T10:41:02.741Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 July 2009

Fred H. Previc
Affiliation:
Eleanor Kolitz Academy, San Antonio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, M., Ferri, S., and Scarone, S. (1995). Wisconsin Card Sorting Test performance in obsessive-compulsive disorder: no evidence for involvement of dorsolateral prefrontal cortex. Psychiatry Research, 58, 37–43.CrossRefGoogle ScholarPubMed
Abi-Dargham, A. and Moore, H. (2003). Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist, 9, 404–416.CrossRefGoogle ScholarPubMed
Abraham, A., Windmann, S., Siefen, R., Daum, I., and Gunturkun, O. (2006). Creative thinking in adolescents with attention deficit hyperactivity disorder (ADHD). Child Neuropyschology, 12, 111–123.CrossRefGoogle Scholar
Abwender, D. A., Trinidad, K. S., Jones, K. R., Como, P. G., Hymes, E., and Kurlan, R. (1998). Features resembling Tourette's syndrome in developmental stutterers. Brain and Language, 62, 455–464.CrossRefGoogle ScholarPubMed
Adler, C. M., McDonough-Ryan, P., Sax, K. W., Holland, S. K., Arndt, S., and Strakowski, S. M. (2000). FMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. Journal of Psychiatric Research, 34, 317–324.CrossRefGoogle ScholarPubMed
Al-Absi, M., Bongard, S., Buchanan, T., Pincomb, G. A., Licinio, J., and Lovallo, W. R. (1997). Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors. Psychophysiology, 34, 266–275.CrossRefGoogle Scholar
Al-Adawi, S., Dawe, G. S., and Al-Hussaini, A. A. (2000). Aboulia: neurobehavioural dysfunction of dopaminergic system?Medical Hypotheses, 54, 523–530.CrossRefGoogle ScholarPubMed
Alcaro, A., Huber, R., and Panksepp, J. (2005). Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews, 56, 283–321.CrossRefGoogle Scholar
Aldridge, J., Berridge, K., Herman, M., and Zimmer, L. (1993). Neuronal coding of serial order, syntax of grooming in the neostriatum. Psychological Science, 4, 391–395.CrossRefGoogle Scholar
Aleman, A., Kahn, R. S., and Selten, J. P. (2003). Sex differences in the risk of schizophrenia: evidence from meta-analysis. Archives of General Psychiatry, 60, 565–571.CrossRefGoogle ScholarPubMed
Alias, A. G. (2000). Schizotypy and leadership: a contrasting model for deficit symptoms, and a possible therapeutic role of sex hormones. Medical Hypotheses, 54, 537–552.CrossRefGoogle Scholar
Alonso, L. C., and Rosenfield, R. L. (2003). Molecular genetic and endocrine mechanisms of hair growth. Hormone Research, 60, 1–13.CrossRefGoogle ScholarPubMed
Ambrose, S. H. (1998). Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. Journal of Human Evolution, 34, 623–651.CrossRefGoogle Scholar
Amos, J. (2 Dec 2003). Neanderthal “face” found in Loire. BBC News World Edition Online (http://news.bbc.co.uk/2/hi/science/nature/3256228.stm).
Andrew, J. M. (1981). Parietal laterality and violence. International Journal of Neuroscience, 12, 7–14.CrossRefGoogle ScholarPubMed
Angst, J., Gamma, A., Endrass, J., Hantouche, E., Goodwin, R., Ajdacic, V., Eich, D., and Rossler, W. (2005). Obsessive-compulsive syndromes and disorders: significance of comorbidity with bipolar and anxiety syndromes. European Archives of Psychiatry and Clinical Neuroscience, 255, 65–71.CrossRefGoogle ScholarPubMed
Anisman, H., and Zacharko, R. M. (1986). Behavioral and neurochemical consequences associated with stressors. Annals of the New York Academy of Sciences, 467, 205–225.CrossRefGoogle ScholarPubMed
Annett, M. (1985). Left, Right, Hand and Brain: the Right Shift Theory. London: Erlbaum.Google Scholar
Arbisi, P. A., Depue, R. A., Krauss, S., Spoont, M. R., Leon, A., Ainsworth, B., and Muir, R. (1994). Heat-loss response to a thermal challenge in seasonal affective disorder. Psychiatry Research, 52, 199–214.CrossRefGoogle ScholarPubMed
Archer, T., and Fredriksson, A. (1992). Functional changes implicating dopaminergic systems following perinatal treatments. Developmental Pharmacological Therapy, 18, 201–222.Google ScholarPubMed
Arensburg, B., Schepartz, L. A., Tillier, A. M., Vandermeersch, B., and Rak, Y. (1990). A reappraisal of the anatomical basis for speech in Middle Palaeolithic hominids. American Journal of Physical Anthropology, 83, 137–146.CrossRefGoogle ScholarPubMed
Arnold, L. M. (2003). Gender differences in bipolar disorder. Psychiatric Clinics of North America, 26, 595–620.CrossRefGoogle ScholarPubMed
Arnulf, I., Bonnet, A.-M., Damier, P., Bejjani, B.-P., Seilhean, D., Derenne, J.-P., and Agid, Y. (2000). Hallucinations, REM sleep, and Parkinson's disease. Neurology, 55, 281–288.CrossRefGoogle ScholarPubMed
Arsuaga, J. L. (2003). The Neanderthal's Necklace: in Search of the First Thinkers. New York: Wiley & Sons.Google Scholar
Ashford, N. A., and Miller, C. S. (1991). Chemical Exposures: Low Levels and High Stakes. New York: Van Nostrand Reinhold.Google Scholar
Bäckman, L., and Farde, L. (2001). Dopamine and cognitive functioning: brain imaging findings in Huntington's disease and normal aging. Scandinavian Journal of Psychology, 42, 287–296.CrossRefGoogle ScholarPubMed
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., and Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.CrossRefGoogle ScholarPubMed
Baldo, B. A., and Kelley, A. E. (2007). Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology, 191, 439–459.CrossRefGoogle ScholarPubMed
Ball, D., Hill, L., Eley, T. C., Chorney, M. J., Chorney, K., Thompson, L. A., Detterman, D. K., Benbow, C., Lubinski, D., Owen, M., McGuffin, P., and Plomin, R. (1998). Dopamine markers and cognitive ability. Neuroreport, 26, 347–349.CrossRefGoogle Scholar
Ball, W. W. Rouse (1908). A Short Account of the History of Mathematics (4th edn). Mineola: Dover Publications.Google Scholar
Bansal, S. A., Lee, L. A., and Woolf, P. D. (1981). Dopaminergic stimulation and inhibition of growth hormone secretion in normal man: studies of the pharmacological specificity. Journal of Clinical Endocrinology and Metabolism, 53, 1273–1277.CrossRefGoogle Scholar
Barcelo, F., Sanz, M., Molina, V., and Rubia, F. J. (1997). The Wisconsin Card Sorting Test and the assessment of frontal function: a validation study with event-related potentials. Neuropsychologia, 35, 399–408.CrossRefGoogle ScholarPubMed
Bardo, M. T., Donohew, R. L., and Harrington, N. G. (1996). Psychobiology of novelty seeking and drug seeking behavior. Behavioral and Brain Research, 77, 23–43.CrossRefGoogle ScholarPubMed
Barrett, A. M., and Eslinger, P. J. (2007). Amantadine for adynamic speech: possible benefit for aphasia?American Journal of Physical Medicine and Rehabilitation, 86, 605–612.CrossRefGoogle ScholarPubMed
Barros, R. C., Branco, L. G., and Carnio, E. C. (2004). Evidence for thermoregulation by dopamine D1 and D2 receptors in the anteroventral preoptic region during normoxia and hypoxia. Brain Research, 1030, 165–171.CrossRefGoogle ScholarPubMed
Bates, T., and Stough, C. (1998). Improved reaction time method, information processing speed, and intelligence. Intelligence, 26, 53–62.CrossRefGoogle Scholar
Batson, C. D., and Ventis, W. L. (1982). The Religious Experience: a Social-Psychological Perspective. New York: Oxford University Press.Google Scholar
Bauer, M., and Pfennig, A. (2005). Epidemiology of bipolar disorders. Epilepsia, 46 (Suppl. 4), 8–13.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., and Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123, 2189–2202.CrossRefGoogle ScholarPubMed
Behar, D. M., Villems, R., Soodyall, H., Blue-Smith, J., Pereira, L., Metspalu, E., Scozzari, R., Makkan, H., Tzur, S., et al. (2008). The dawn of human matrilineal diversity. American Journal of Human Genetics, 82, 1130–1140.CrossRefGoogle ScholarPubMed
Bellini, S., and Pratt, C. (2003). Indiana parent/family 2003 needs assessment survey summary (www.iidc.indiana.edu/irca/2003NeedsAssess.html).
Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain Research Reviews, 6, 173–196.CrossRefGoogle Scholar
Benkelfat, C., Nordahl, T. E., Semple, W. E., King, A. C., Murphy, D. L., and Cohen, R. M. (1990). Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Patients treated with clomipramine. Archives of General Psychiatry, 47, 840–848.CrossRefGoogle ScholarPubMed
Bentley, A. (1983). Personal and global futurity in Scottish and Swazi students. Journal of Social Psychology, 121, 223–229.CrossRefGoogle Scholar
Benvenga, S., Lapa, D., and Trimarchi, F. (2003). Don't forget the thyroid in the etiology of psychoses. American Journal of Medicine, 115, 159–160.CrossRefGoogle ScholarPubMed
Berger, B., Gaspar, P., and Verney, C. (1991). Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in Neurosciences, 14, 21–27.CrossRefGoogle ScholarPubMed
Berlinski, D. (2000). Newton's Gift. New York: Free Press.Google Scholar
Berman, K. F., and Weinberger, D. R. (1990). Lateralisation of cortical function during cognitive tasks: regional cerebral blood flow studies of normal individuals and patients with schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 53, 150–160.CrossRefGoogle ScholarPubMed
Berrettini, W. H. (2000). Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biological Psychiatry, 48, 531–538.CrossRefGoogle ScholarPubMed
Berridge, K. C., and Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?Brain Research Reviews, 28, 309–369.CrossRefGoogle ScholarPubMed
Bick, P. A., and Kinsbourne, M. (1987). Auditory hallucinations and subvocal speech in schizophrenic patients. American Journal of Psychiatry, 144, 222–225.Google ScholarPubMed
Bickerton, D. (1995). Language and Human Behavior. Seattle: University of Washington Press.Google Scholar
Biederman, J., and Faraone, S. V. (2005). Attention-deficit hyperactivity disorder. Lancet, 366, 237–248.CrossRefGoogle ScholarPubMed
Bjerknes, C. J. (2002). Albert Einstein: the Incorrigible Plagiarist. Downers Grove:XTX, Inc.Google Scholar
Blackburn, J. R., Pfaus, J. G., and Phillips, A. G. (1992). Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiology, 39, 247–279.CrossRefGoogle ScholarPubMed
Blanchard, R. J., Griebel, G., Guardiola-Lemaitre, B., Brush, M. M., Lee, J., and Blanchard, D. C. (1997). An ethopharmacological analysis of selective activation of 5-HT1A receptors: the mouse 5-HT1A syndrome. Pharmacology, Biochemistry and Behavior, 57, 897–908.CrossRefGoogle ScholarPubMed
Blatteis, C. M., Billmeier, G. J., and Gilbert, T. M. (1974). Thermoregulation of phenylketonuric children. Pediatric Research, 8, 809–814.CrossRefGoogle ScholarPubMed
Blum, D. (1997). The plunge of pleasure. Psychology Today, Sep/Oct 97 (www.psychologytoday.com/articles/pto-19970901–000033.html).
Blumberg, H. P., Stern, E., Martinez, D., Ricketts, S., Asis, J., White, T., Epstein, J., Mcbride, P. A., Eidelberg, D., Kocsis, J. H., and Silbersweig, D. A. (2000). Increased anterior cingulate and caudate activity in bipolar mania. Biological Psychiatry, 48, 1045–1052.CrossRefGoogle ScholarPubMed
Bogen, J. E., and Bogen, J. M. (1988). Creativity and the corpus callosum. Psychiatric Clinics of North America, 11, 293–301.Google ScholarPubMed
Borod, J, C., Bloom, R. L., Brickman, A. M., Nakhutina, L., and Curko, E. A. (2002). Emotional processing deficits in individuals with unilateral brain damage. Applied Neuropsychology, 9, 23–36.CrossRefGoogle ScholarPubMed
Bortz, W. M. H. (1985). Physical exercise as an evolutionary force. Journal of Human Evolution, 14, 145–155.CrossRefGoogle Scholar
Botzung, A., Denkova, E., and Manning, L. (2008). Experiencing past and future personal events: functional neuroimaging evidence on the neural bases of mental time travel. Brain and Cognition, 66, 202–212.CrossRefGoogle ScholarPubMed
Bowen, M. (2005). Thin Ice: Unlocking the Secrets of Climate in the World's Highest Mountains. New York: Holt and Company.Google Scholar
Boyages, S. C., and Halpern, J. P. (1993). Endemic cretinism: toward a unifying hypothesis. Thyroid, 3, 59–69.CrossRefGoogle Scholar
Boyd, A. E., Lebovitz, H. E., and Pfeiffer, J. B. (1970). Stimulation of human growth-hormone secretion by L-DOPA. New England Journal of Medicine, 283, 1425–1429.CrossRefGoogle ScholarPubMed
Bracha, H. S., Cabrera, F. J. Jr., Karson, C. N., and Bigelow, L. B. (1985). Lateralization of visual hallucinations in chronic schizophrenia. Biological Psychiatry, 20, 1132–1136.CrossRefGoogle ScholarPubMed
Bradshaw, J. L., and Nettleton, N. C. (1981). The nature of hemispheric specialization in man. Behavioral and Brain Sciences, 4, 51–63.CrossRefGoogle Scholar
Brady, J. P. (1991). The pharmacology of stuttering: a critical review. American Journal of Psychiatry, 148, 1309–1316.Google ScholarPubMed
Bramble, D. M., and Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432, 345–352.CrossRefGoogle ScholarPubMed
Braun, C. M., Dumont, M., Duval, J., Hamel, I., and Godbout, L. (2003). Opposed left and right brain hemisphere contributions to sexual drive: a multiple lesion case analysis. Behavioral Neurology, 14, 55–61.CrossRefGoogle ScholarPubMed
Braver, T. S., and Barch, D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience and Biobehavioral Reviews, 26, 809–817.CrossRefGoogle ScholarPubMed
Breier, A, Kestler, L., Adler, C., Elman, I., Wiesenfeld, N., Malhotra, A., and Pickar, D. (1998). Dopamine D2 receptor density and personal detachment in healthy subjects. American Journal of Psychiatry, 155, 1440–1442.CrossRefGoogle ScholarPubMed
Brian, D. (1996). Einstein: a Life. New York: Wiley & Sons.Google Scholar
Britton, W. B., and Bootzin, R. R. (2004). Near-death experiences and the temporal lobe. Psychological Science, 15, 254–258.CrossRefGoogle ScholarPubMed
Broadhurst, C. L., Cunnane, S. C., and Crawford, M. A. (1998). Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. British Journal of Nutrition, 79, 3–21.CrossRefGoogle ScholarPubMed
Brock, J. W., and Ashby, C. R., Jr. (1996). Evidence for genetically mediated dysfunction of the central dopaminergic system in the stargazer rat. Psychopharmacology, 123, 199–205.CrossRefGoogle ScholarPubMed
Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia, 32, 200–202.CrossRef
Brown, D. (2003). The Da Vinci Code. New York: Doubleday.Google Scholar
Brown, R. M., Crane, A. M., and Goldman, P. S. (1979). Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Research, 168, 133–150.CrossRefGoogle ScholarPubMed
Brown, S. (2000). Evolutionary models of music: from sexual selection to group selection. In Thompson, N. S. and Tonneau, F. (eds), Perspectives in Ethology 13: Evolution, Culture, and Behavior (pp. 221–281). New York: Plenum.Google Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205, 929–932.CrossRefGoogle ScholarPubMed
Brugger, P., Regard, M., and Landis, T. (1991). Belief in extrasensory perception and illusory control: a replication. Journal of Psychology, 125, 501–502.CrossRefGoogle Scholar
Brumback, R. A. (1988). Childhood depression and medically treatable learning disability. In Molfese, D. L. and Segalowitz, S. J. (eds), Brain Lateralization in Children: Developmental Implications (pp. 463–505). New York: Guilford.Google Scholar
Brunet, M., Beauvilain, A., Coppens, Y., Heintz, E., Moutaye, A. H. E., and Pilbeam, D. (1995). The first australopithecine 2,500 kilometers west of the Rift Valley (Chad). Nature, 378, 273–278.CrossRefGoogle Scholar
Bryan, K. L. (1988). Assessment of language disorders after right hemisphere damage. British Journal of Disorders of Communication, 23, 111–125.CrossRefGoogle ScholarPubMed
Buchanan, R. W., Kirkpatrick, B., Heinrichs, D. W., and Carpenter, W. T., Jr. (1990). Clinical correlates of the deficit syndrome of schizophrenia. American Journal of Psychiatry, 147, 290–294.Google ScholarPubMed
Buka, S. L., and Fan, A. P. (1999). Association of prenatal and perinatal complications with subsequent bipolar disorder and schizophrenia. Schizophrenia Research, 29, 113–119.CrossRefGoogle Scholar
Bunney, W. E., and Bunney, B. G. (2000). Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Research Brain Research Reviews, 31, 138–146.CrossRefGoogle Scholar
Burgard, P. (2000). Development of intelligence in early treated phenylketonuria. European Journal of Pediatrics, 159, S74–S79.CrossRefGoogle ScholarPubMed
Burgdorf, J., and Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 172–187.CrossRefGoogle ScholarPubMed
Caldwell, J. C., and Caldwell, B. K. (2003). Was there a Neolithic mortality crisis?Journal of Population Research, 20, 153–168.CrossRefGoogle Scholar
Cann, R. L., Stoneking, M., and Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature, 325, 31–36.CrossRefGoogle ScholarPubMed
Capra, F. (2003). The Hidden Connections. New York: Doubleday.Google Scholar
Carpenter, L. L., Mcdougle, C. J., Epperson, C. N., and Price, L. H. (1996). A risk-benefit assessment of drugs used in the management of obsessive-compulsive disorder. Drug Safety, 15, 116–134.CrossRefGoogle ScholarPubMed
Carpenter, P. A., Just, M. A., and Shell, P. (1990). What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431.CrossRefGoogle ScholarPubMed
Carrier, D. R. (1984). The energetic paradox of human running and hominid evolution. Current Anthropology, 2, 483–495.CrossRefGoogle Scholar
Carroll, S. B. (2003). Genetics and the making of Homo sapiens. Nature, 422, 849–857.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., and Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499–506.CrossRefGoogle ScholarPubMed
Castle, D. J. (2000). Women and schizophrenia: an epidemiological perspective. In Castle, D. J., Mcgrath, J. and Kulkarni, J. (eds), Women and Schizophrenia (pp. 19–31). Cambridge, UK: Cambridge University Press.Google Scholar
Castle, D. J., Deale, A., and Marks, I. M. (1995). Gender differences in obsessive compulsive disorder. Australian and New Zealand Journal of Psychiatry, 29, 114–117.CrossRefGoogle ScholarPubMed
Centers For Disease Control, and Prevention (CDC). (2005). Mental health in the United States. Prevalence of diagnosis and medication treatment for attention-deficit/hyperactivity disorder–United States, 2003. Morbidity and Mortality Weekly Report, 54 (34), 842–847.Google Scholar
Chaouloff, F. (1989). Physical exercise and brain monoamines: a review. Acta Physiologica Scandanavica, 137, 1–13.CrossRefGoogle ScholarPubMed
Charette, F. (2006). High tech from Ancient Greece. Nature, 444, 551–552.CrossRefGoogle ScholarPubMed
Cheyne, J. A., and Girard, T. A. (2004). Spatial characteristics of hallucinations associated with sleep paralysis. Cognitive Neuropsychiatry, 9, 281–300.Google ScholarPubMed
Chomsky, N. (1988). Language and Problems of Knowledge: the Managua Lectures. Cambridge, MA: MIT Press.Google Scholar
Chua, S. E., and McKenna, P. J. (1995). Schizophrenia – a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. British Journal of Psychiatry, 166, 563–582.CrossRefGoogle ScholarPubMed
Chudasama, T., Nathwani, F., and Robbins, T. W. (2005). D-amphetamine remediates attentional performance in rats with dorsal prefrontal lesions. Brain Research, 158, 97–107.Google ScholarPubMed
Civelli, O. (2000). Molecular biology of the dopamine receptor subtypes. In Neuropsychopharmacology: the Fourth Generation of Progress. American College of Neuropsychopharmacology (www.acnp.org/content-32.html).
Clark, D., and Clark, S. P. H. (2001). Newton's Tyranny: the Suppressed Scientific Discoveries of Stephen Gray and John Flamsteed. New York: W. H. Freeman and Company.Google Scholar
Clark, M. E. (1989). Ariadne's Thread: the Search for New Modes of Thinking. New York: St. Martin's Press.CrossRefGoogle Scholar
Cloninger, C. R., Svrakic, D. M., and Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975–990.CrossRefGoogle ScholarPubMed
Coco, M. L., and Weiss, J. M. (2005). Neural substrates of coping behavior in the rat: possible importance of mesocorticolimbic dopamine system. Behavioral Neuroscience, 119, 429–445.CrossRefGoogle ScholarPubMed
Cohen, M. S., Kosslyn, S. M., Breiter, H. C., Digirolamo, G. J., Thompson, W. L, Anderson, A. K., Brookheimer, S. Y., Rosen, B. R., and Belliveau, J. W. (1996). Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119, 89–100.CrossRefGoogle ScholarPubMed
Comings, D. E., and Blum, K. (2000). Reward deficiency syndrome: genetic aspects of behavioral disorders. Progress in Brain Research, 126, 325–341.CrossRefGoogle ScholarPubMed
Comings, D. E., Wu, S., Chiu, C., Ring, R. H., Gade, R., Ahn, C., MacMurray, J. P., Dietz, G., and Muhleman, D. (1996). Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: the additive and subtractive effect of the three dopaminergic genes–DRD2, D beta H, and DAT1. American Journal of Medical Genetics, 67, 264–288.3.0.CO;2-N>CrossRefGoogle Scholar
Como, P. G., Lamarsh, J., and O'Brien, K. A. (2005). Obsessive-compulsive disorder in Tourette's syndrome. Advances in Neurology, 96, 249–261.Google ScholarPubMed
Cooper, J. R., Bloom, F. E., and Roth, R. H. (2002). The Biochemical Basis of Neuropharmacology (8th edn). New York: Oxford University Press.Google Scholar
Coppens, Y. (1996). Brain, locomotion, diet, and culture: how a primate, by chance, became a man. In Changeux, J.-P. and Chavaillon, J. (eds), Origins of the Human Brain (pp. 104–112). Oxford: Clarendon.Google Scholar
Corballis, M. C. (1989). Laterality and human evolution. Psychological Review, 96, 492–505.CrossRefGoogle ScholarPubMed
Corballis, M. C. (1992). On the evolution of language and generativity. Cognition, 44, 197–226.CrossRefGoogle ScholarPubMed
Coren, S. (1992). The Left-Hander Syndrome: the Causes and Consequences of Left-Handedness. New York: Free Press.Google Scholar
Corin, M. S., Elizan, T. S., and Bender, M. B. (1972). Oculomotor function in patients with Parkinson's disease. Journal of the Neurological Sciences, 15, 251–265.CrossRefGoogle ScholarPubMed
Corti, O., Hampe, C., Darios, F., Ibanez, P., Ruberg, M., and Brice, A. (2005). Parkinson's disease: from causes to mechanisms. Comptes Rendus Biologies, 328, 131–142.CrossRefGoogle ScholarPubMed
Cox, B. (1979). Dopamine. In Lomax, P. and Schonbaum, E. (eds), Body Temperature: Regulation, Drug Effects, and Therapeutic Implications (pp. 231–255). New York: Dekker.Google Scholar
Crile, G. (1934). Diseases Peculiar to Civilized Man. New York: MacMillan.Google Scholar
Crockford, S. J. (2002). Commentary: thyroid hormone in Neandertal evolution: a natural or pathological role?Geographical Review, 92, 73–88.CrossRefGoogle Scholar
Croen, L. A., Grether, J. K., and Selvin, S. (2002). Descriptive epidemiology of autism in a California population: who is at risk?Journal of Autism and Developmental Disorders, 32, 217–224.CrossRefGoogle Scholar
Cropley, V. L., Fujita, M., Innis, R. B., and Nathan, P. J. (2006). Molecular imaging of the dopaminergic system and its association with human cognitive function. Biological Psychiatry, 59, 898–907.CrossRefGoogle ScholarPubMed
Crow, T. J. (1973). Catecholamine-containing neurones and electrical self-stimulation: 2. A theoretical interpretation and some psychiatric implications. Psychological Medicine, 3, 66–73.CrossRefGoogle ScholarPubMed
Crow, T. J. (2000). Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Research Brain Research Reviews, 31, 118–129.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. Annals of the New York Academy of Sciences, 769, 1–13.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1997). Neuropsychiatric manifestations of right hemisphere lesions. Brain and Language, 57, 22–37.CrossRefGoogle ScholarPubMed
Cutting, J. (1990). The Right Hemisphere and Psychiatric Disorders. Oxford: Oxford University Press.Google Scholar
Damsa, C., Bumb, A., Bianchi-Demicheli, F., Vidailhet, P., Sterck, R., Andreoli, A., and Beyenburg, S. (2004). Dopamine-dependent side effects of selective serotonin reuptake inhibitors: a clinical review. Journal of Clinical Psychiatry, 65, 1064–1068.CrossRefGoogle ScholarPubMed
Daneman, M., and Merikle, P. M. (1996). Working memory and language comprehension: a meta-analysis. Psychonomic Bulletin and Review, 3, 422–433.CrossRefGoogle ScholarPubMed
Davidson, L. L., and Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research, 122, 69–87.CrossRefGoogle ScholarPubMed
Davis, J. O., Phelps, J. A., and Bracha, H. S. (1995). Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophrenia Bulletin, 21, 357–366.CrossRefGoogle Scholar
Dawson, M., Soulières, I., Gernsbacher, M. A., and Mottron, L. (2007). The level and nature of autistic intelligence. Psychological Science, 18, 657–662.CrossRefGoogle ScholarPubMed
Almeida, R. M., Ferrari, P. F., Parmigiani, S., and Miczek, K. A. (2005). Escalated aggressive behavior: dopamine, serotonin and GABA. European Journal of Pharmacology, 526, 51–64.CrossRefGoogle ScholarPubMed
Bode, S., and Curtiss, S. (2000). Language after hemispherectomy. Brain and Cognition, 43, 135–138.Google ScholarPubMed
Brabander, B., and Boone, C. (1990). Sex differences in perceived locus of control. Journal of Social Psychology, 130, 271–272.CrossRefGoogle ScholarPubMed
Brabander, B., and Declerck, C. (2004). A possible role of central dopamine metabolism in individual differences in locus of control. Journal of Personality and Individual Differences, 37, 735–750.CrossRefGoogle Scholar
Brabander, B., Boone, C., and Gerits, P. (1992). Locus of control and cerebral asymmetry. Perceptual and Motor Skills, 75, 131–413.CrossRefGoogle ScholarPubMed
Declerck, C. H., Boone, C., and Brabander, B. (2006). On feeling in control: a biological theory for individual differences in control perception. Brain and Cognition, 62, 143–176.CrossRefGoogle ScholarPubMed
Deglin, V. L., and Kinsbourne, M. (1996). Divergent thinking styles of the hemispheres: how syllogisms are solved during transitory hemisphere suppression. Brain and Cognition, 31, 285–307.CrossRefGoogle ScholarPubMed
Fuente-Fernandez, R., Kishore, A., Calne, D. B., Ruth, T. J., and Stoessl, A. J. (2000). Nigrostriatal dopamine system and motor lateralization. Behavioural and Brain Research, 112, 63–68.CrossRefGoogle ScholarPubMed
DeLange, F. (2000). The role of iodine in brain development. Proceedings of the Nutrition Society, 59, 75–79.CrossRefGoogle ScholarPubMed
Delaveau, P., Salgado-Pineda, P., Wickerm, B., Micallef-Roll, J., and Blin, O. (2005). Effect of levodopa on healthy volunteers' facial emotion perception: an FMRI study. Clinical Neuropharmacology, 28, 255–261.CrossRefGoogle ScholarPubMed
Delion, S., Chalon, S., Guilloteau, D., Besnard, J. C., and Durand, G. (1996). Alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. Journal of Neurochemistry, 66, 1582–1591.CrossRefGoogle ScholarPubMed
Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth, M. F., and Bannerman, D. M. (2005). Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology, 179, 587–596.CrossRefGoogle ScholarPubMed
Denys, D., Wee, N., Janssen, J., Geus, F., and Westenberg, H. G. (2004). Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biological Psychiatry, 55, 1041–1045.CrossRefGoogle ScholarPubMed
Depue, R. A., and Collins, P. F. (1999). Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–569.CrossRefGoogle ScholarPubMed
Depue, R. A., and Iacono, W. G. (1989). Neurobehavioral aspects of affective disorders. Annual Review of Psychology, 40, 457–492.CrossRefGoogle ScholarPubMed
Depue, R. A., and Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313–350.CrossRefGoogle ScholarPubMed
Deutch, A. Y., Clark, W. A., and Roth, R. H. (1990). Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Research, 521, 311–315.CrossRefGoogle ScholarPubMed
Diamond, A., Prevor, M. B., Callender, G., and Druin, D. P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62(4), 1–208.CrossRefGoogle ScholarPubMed
Dickens, W. T., and Flynn, J. R. (2001). Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychological Review, 108, 346–369.CrossRefGoogle ScholarPubMed
Dinn, W. M., Harris, C. L., Aycicegi, A., Greene, P., and Andover, M. S. (2002). Positive and negative schizotypy in a student sample: neurocognitive and clinical correlates. Schizophrenia Research, 56, 171–185.CrossRefGoogle Scholar
Dobson, J. E. (1998). The iodine factor in health and evolution. The Geographical Review, 88, 1–18.CrossRefGoogle Scholar
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., and Ahlskog, J. E. (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62, 1377–1381.CrossRefGoogle ScholarPubMed
Dorus, S., Vallender, E. J., Evans, P. D., Anderson, J. R., Gilbert, S. L., Mahowald, M., Wyckoff, G. J., Malcom, C. M., and Lahn, B. T. (2004). Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119, 1027–1040.CrossRefGoogle ScholarPubMed
Dringenberg, H. C., Wightman, M., and Beninger, R. J. (2000). The effects of amphetamine and raclopride on food transport: possible relation to defensive behavior in rats. Behavioral Pharmacology, 11, 447–554.CrossRefGoogle ScholarPubMed
Dringenberg, H. C., Dennis, K. E., Tomaszek, S., and Martin, J. (2003). Orienting and defensive behaviors elicited by superior colliculus stimulation in rats: effects of 5-HT depletion, uptake inhibition, and direct midbrain or frontal cortex application. Behavioural and Brain Research, 144, 95–103.CrossRefGoogle ScholarPubMed
Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P., and Geyer, M. A (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. Journal of Neuroscience, 19, 9550–9556.CrossRefGoogle ScholarPubMed
Duncan, R. C. (2005). The Olduvai theory: energy, population, and industrial civilization. The Social Contract, 16(2), 134–144.Google Scholar
Easterbrook, G. (2004). Red scare. The New Republic Online, February 2, 2004. www.tnr.com/doc.mhtml?i=20040202&s=easterbrook020204.
Eaton, S. B. (1992). Humans, lipids and evolution. Lipids, 27, 814–820.CrossRefGoogle ScholarPubMed
Eisen, J. L., and Rasmussen, S. A. (1993). Obsessive compulsive disorder with psychotic features. Journal of Clinical Psychiatry, 54, 373–379.Google ScholarPubMed
Elliott, F. A. (1982). Violence: a neurological overview. Practitioner, 226, 301–304.
Ellis, K. A., and Nathan, P. J. (2001). The pharmacology of human working memory. International Journal of Neuropsychopharmacology, 4, 299–313.CrossRefGoogle ScholarPubMed
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, K., Monaco, A. P., and Paabo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.CrossRefGoogle ScholarPubMed
Erlandson, J. M. (2001). The archaeology of aquatic adaptations: paradigms for a new millennium. Journal of Archaeological Research, 9, 287–350.CrossRefGoogle Scholar
Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., Brooks, D. J., Lees, A. J., and Piccini, P. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59, 852–858.CrossRefGoogle ScholarPubMed
Fabisch, K., Fabisch, H., Langs, G., Huber, H. P., and Zapotoczky, H. G. (2001). Incidence of obsessive-compulsive phenomena in the course of acute schizophrenia and schizoaffective disorder. European Psychiatry, 16, 336–341.CrossRefGoogle ScholarPubMed
Falcone, D. J., and Loder, K. (1984). A modified lateral eye-movement measure, the right hemisphere and creativity. Perceptual and Motor Skills, 58, 823–830.CrossRefGoogle ScholarPubMed
Falk, D. (1990). Brain evolution inHomo: The “radiator”theory. Behavioral and Brain Sciences, 13, 333–344.Google Scholar
Fallon, J. H., and Loughlin, S. E. (1987). Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In Jones, E. G. and Peters, A. (eds), Cerebral Cortex (Vol. 6). New York: Plenum.Google Scholar
Faraone, S. V., Biederman, J., and Mick, E. (2006). The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychological Medicine, 36, 159–165.CrossRefGoogle ScholarPubMed
Farde, L., Gustavsson, J. P., and Jonsson, E. (1997). D2 dopamine receptors and personality traits. Nature, 383, 590.Google Scholar
Faridi, K., and Suchowersky, O. (2003). Gilles de la Tourette's Syndrome. Canadian Journal of the Neurological Sciences, 30 (Suppl. 1), S64–S71.CrossRefGoogle ScholarPubMed
Farmer, M. E., and Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: a review. Psychonomic Bulletin and Review, 2, 460–493.CrossRefGoogle ScholarPubMed
Fellows, L. K., and Farah, M. J. (2005). Dissociable elements of human foresight: a role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia, 43, 1214–1221.CrossRefGoogle Scholar
Fenwick, P., Galliano, S., Coate, M. A., Rippere, V., and Brown, D. (1985). “Psychic” sensitivity, mystical experience, head injury and brain pathology. British Journal of Medical Psychology, 58, 35–44.CrossRefGoogle ScholarPubMed
Fibiger, H. C., Phillips, A. G., and Brown, E. E. (1992). The neurobiology of cocaine-induced reinforcement. Ciba Foundation Symposium, 166, 96–111.Google ScholarPubMed
Figa-Talamanca, L., and Gualandi, C. (1989). Hyperthermic syndromes and impairment of the dopaminergic system: a clinical study. Italian Journal of Neurological Sciences, 10, 49–59.CrossRefGoogle ScholarPubMed
Fink, J. S., and Smith, G. P. (1980). Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats. Neuroscience Letters, 17, 61–65.CrossRefGoogle ScholarPubMed
Finlay, J. M., and Zigmond, M. J. (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochemical Research, 22, 1387–1394.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2006). The biology and evolution of music: a comparative perspective. Cognition, 100, 173–215.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493, 147–153.CrossRefGoogle ScholarPubMed
Flor-Henry, P. (1986). Observations, reflections and speculations on the cerebral determinants of mood and on the bilaterally asymmetrical distributions of the major neurotransmitter systems. Acta Neurologica Scandinavica, 74 (Suppl. 109), 75–89.CrossRefGoogle ScholarPubMed
Folk, G. E., Jr., and Semken, H. A., Jr. (1991). The evolution of sweat glands. International Journal of Biometeorology, 35, 180–186.CrossRefGoogle ScholarPubMed
Freeman, M. P., Freeman, S. A., and Mcelroy, S. L. (2002). The comorbidity of bipolar and anxiety disorders: prevalence, psychobiology, and treatment issues. Journal of Affective Disorders, 68, 1–23.CrossRefGoogle ScholarPubMed
Freud, S. (1927). The Ego and the Id (trans. J. Riviere). London: Hogarth Press and Institute of Psycho-Analysis.Google Scholar
Fry, A. F., and Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological Psychology, 54, 1–34.CrossRefGoogle ScholarPubMed
Fukumura, M., Cappon, G. D., Broening, H. W., and Vorhees, C. V. (1998). Methamphetamine-induced dopamine and serotonin reductions in neostriatum are not gender specific in rats with comparable hyperthermic responses. Neurotoxicology and Teratology, 20, 441–448.CrossRefGoogle Scholar
Gagneux, P., Arness, B., Diaz, S., Moore, S., Patel, T., Dillmann, W., Parkeh, R., and Varki, A. (2001). Proteomic comparison of human and great ape blood plasma reveals conserved glycosylation and differences in thyroid hormone metabolism. American Journal of Physical Anthropology, 115, 99–109.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T., Voss, H., Glover, G., and Casey, B. J. (2007). Risk-taking and the adolescent brain: who is at risk?Developmental Science, 10, F8–F14.CrossRefGoogle ScholarPubMed
Garner, J. P., Meehan, C. L., and Mench, J. A. (2003). Stereotypies in caged parrots, schizophrenia and autism: evidence for a common mechanism. Behavioural Brain Research, 145, 125–134.CrossRefGoogle ScholarPubMed
Gaspar, P., Berger, B., Febvret, A., Vigny, A., and Henry, J. P. (1989). Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative Neurology, 279, 249–271.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (1983). Right hemisphere language following brain bisection: a 20-year perspective. American Psychologist, 38, 525–537.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nature Review Neuroscience, 6, 653–659.CrossRefGoogle ScholarPubMed
Geller, D. A., Biederman, J., Faraone, S., Spencer, T., Doyle, R., Mullin, B., Magovcevic, M., Zaman, N., and Farrell, C. (2004). Re-examining comorbidity of obsessive compulsive and attention-deficit hyperactivity disorder using an empirically derived taxonomy. European Child and Adolescent Psychiatry, 13, 83–91.CrossRefGoogle ScholarPubMed
Gervais, J., and Rouillard, C. (2000). Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse, 35, 281–291.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Geschwind, N., and Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology. I. A hypothesis and program for research. Archives of Neurology, 42, 428–459.CrossRefGoogle ScholarPubMed
Gilbert, C. (1995). Optimal physical performance in athletes: key roles of dopamine in a specific neurotransmitter/hormonal mechanism. Mechanisms of Ageing and Development, 84, 83–102.CrossRefGoogle Scholar
Gillam, M. P., Fideleff, H., Boquete, H. R., and Molitch, M. E. (2004). Prolactin excess: treatment and toxicity. Pediatric Endocrinology Review, 2 (Suppl. 1), 108–114.Google ScholarPubMed
Gillberg, C., and Billstedt, E. (2000). Autism and Asperger syndrome: coexistence with other clinical disorders. Acta Psychiatrica Scandinavica, 102, 321–339.CrossRefGoogle ScholarPubMed
Girard, T. A., and Cheyne, J. A. (2004). Individual differences in lateralisation of hallucinations associated with sleep paralysis. Laterality, 9, 93–111.CrossRefGoogle ScholarPubMed
Girard, T. A., Martius, D. L. M. A., and Cheyne, J. A. (2007). Mental representation of space: insights from an oblique distribution of hallucinations. Neuropsychologia, 45, 1257–1269.CrossRefGoogle ScholarPubMed
Giuliano, F., and Allard, J. (2001). Dopamine and male sexual function. European Urology, 40, 601–608.CrossRefGoogle ScholarPubMed
Gleick, J. (2003). Isaac Newton. New York: Pantheon Books.Google Scholar
Glickstein, M., and Stein, J. (1991). Paradoxical movement in Parkinson's disease. Trends in Neurosciences, 14, 480–482.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1998). The cortical dopamine system: role in memory and cognition. Advances in Pharmacology, 42, 707–711.CrossRefGoogle ScholarPubMed
Goldstein, R. Z., and Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.CrossRefGoogle ScholarPubMed
Goodman, N. (2002). The serotonergic system and mysticism: could LSD and the nondrug-induced mystical experience share common neural mechanisms?Journal of Psychoactive Drugs, 34, 263–272.CrossRefGoogle ScholarPubMed
Goodwin, F. K., and Jamison, K. R. (1990). Manic-Depressive Illness. New York: Oxford University Press.Google Scholar
Gopnik, M. (1990). Genetic basis of grammar defect. Nature, 347, 26.CrossRefGoogle ScholarPubMed
Gottesmann, C. (2002). The neurochemistry of waking and sleeping mental activity: the disinhibition–dopamine hypothesis. Psychiatry and Clinical Neurosciences, 56, 345–354.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: from central dogma to probabilistic epigenesis. Psychological Review, 105, 792–802.CrossRefGoogle ScholarPubMed
Gottlieb, K., and Manchester, D. K. (1986). Twin study methodology and variability in xenobiotic placental metabolism. Teratogenesis, Carcinogenesis, and Mutagenesis, 6, 253–263.CrossRefGoogle ScholarPubMed
Gray, J. (1992). Men are from Mars, Women are from Venus: the Classic Guide to Understanding the Opposite Sex. New York: Harper Collins.Google Scholar
Gray, J. R., Chabris, C. F. and Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.CrossRefGoogle ScholarPubMed
Greene, A. L., and Wheatley, S. M. (1992). “I've got a lot to do and I don't think I'll have the time”: Gender differences in late adolescents' narratives of the future. Journal of Youth and Adolescence, 21, 667–686.CrossRefGoogle Scholar
Greenfield, P. M. (1991). Language, tools and brain: the ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 14, 531–551.CrossRefGoogle Scholar
GreenFieldboyce, N. (2006). Study: some key materials growing scarce (www.npr.org/templates/story/story.php?storyId=5159755).
Grine, F. E., and Kay, R. F. (1988). Early hominid diets from quantitative image analysis of dental microwear. Nature, 333, 765–768.CrossRefGoogle ScholarPubMed
Gross-Isseroff, R., Hermesh, H., and Weizman, A. (2001). Obsessive compulsive behaviour in autism – towards an autistic-obsessive compulsive syndrome?World Journal of Biological Psychiatry, 2, 193–197.CrossRefGoogle ScholarPubMed
Gruzelier, J. H. (1999). Functional neuropsychological asymmetry in schizophrenia: a review and reorientation. Schizophrenia Bulletin, 25, 91–120.CrossRefGoogle Scholar
Gunter, P. R. (1983). Religious dreaming: a viewpoint. American Journal of Psychiatry, 37, 411–427.Google ScholarPubMed
Gunturkun, O. (2005). The avian‘prefrontal cortex’ and cognition. Current Opinion in Neurobiology, 15, 686–693.CrossRefGoogle ScholarPubMed
Guo, J. F., Yang, Y. K., Chiu, N. T., Yeh, T. L., Chen, P. S., Lee, I. H., and Chu, C. L. (2006). The correlation between striatal dopamine D2/D3 receptor availability and verbal intelligence quotient in healthy volunteers. Psychological Medicine, 36, 547–554.CrossRefGoogle ScholarPubMed
Gur, R. E., and Chin, S. (1999). Laterality in functional imaging studies of schizophrenia. Schizophrenia Bulletin, 25, 141–156.CrossRefGoogle ScholarPubMed
Hall, A., and Walton, G. (2004). Information overload within the health care system: a literature review. Health Information and Libraries Journal, 21, 102–108.CrossRefGoogle ScholarPubMed
Hall, S., and Schallert, T. (1988). Striatal dopamine and the interface between orienting and ingestive functions. Physiology and Behavior, 44, 469–471.CrossRef
Hamblin, D. J. (1987). Has the Garden of Eden been located at last?Smithsonian, 18, 127–135.Google Scholar
Hammer, M. F. (1995). A recent common ancestry for human Y chromosomes. Nature, 378, 376–378.CrossRefGoogle ScholarPubMed
Hammond, N. G. L. (1997). The Genius of Alexander the Great. Chapel Hill: University of North Carolina Press.Google Scholar
Handwerk, B. (2006). “Python cave” reveals oldest human ritual, scientists suggest. National Geographic News, December 22, 2006 (http://news.nationalgeographic.com/news/2006/12/061222-python-ritual.html).
Hanley, W. B., Koch, R., Levy, H. L., Matalon, R., Rouse, B., Azen, C., and Cruz, F. (1996). The North American maternal phenylketonuria collaborative study, developmental assessment of the offspring: preliminary report. European Journal of Pediatrics, 155 (Suppl. 1), S169–S172.CrossRefGoogle ScholarPubMed
Happe, F., Brownwell, H., and Winner, E. (1999). Acquired “theory of mind” impairments following stroke. Cognition, 70, 211–240.CrossRefGoogle ScholarPubMed
Hardyck, C., Petrinovich, L. F., and Goldman, R. D. (1976). Left-handedness and cognitive deficit. Cortex, 12, 266–279.CrossRefGoogle ScholarPubMed
Hare, E. H., and Walter, S. D. (1978). Seasonal variation in admissions of psychiatric patients and its relation to seasonal variation in their births. Journal of Epidemiology and Community Health, 32, 47–52.CrossRefGoogle ScholarPubMed
Harper, L. V. (2005). Epigenetic inheritance and the intergenerational transfer of experience. Psychological Bulletin, 131, 340–360.CrossRefGoogle ScholarPubMed
Hasan, W., Cowen, T., Barnett, P. S., Elliot, E., Coskeran, P., and Bouloux, P. M. (2001). The sweating apparatus in growth hormone deficiency, following treatment with r-hGH and in acromegaly. Autonomic Neuroscience, 89, 100–109.CrossRefGoogle ScholarPubMed
Hawkes, K., and O'Connell, J. F. (1981) Affluent hunters? Some comments in light of the Alyawara case. American Anthropologist, 83, 622–626.CrossRefGoogle Scholar
Hawks, J., Hunley, K., Lee, S. H., and Wolpoff, M. (2000). Population bottlenecks and Pleistocene human evolution. Molecular Biology and Evolution, 17, 2–22.CrossRefGoogle ScholarPubMed
Hayashi, M., Kato, M., Igarashi, K., and Kashima, H. (2008). Superior fluid intelligence in children with Asperger's disorder. Brain and Cognition, 66, 306–310.CrossRefGoogle ScholarPubMed
Hecaen, H., and Albert, M. L. (1978). Human Neuropsychology. New York: Wiley & Sons.Google Scholar
Heilman, K. M., and Gilmore, R. L. (1998). Cortical influences in emotion. Journal of Clinical Neurophysiology, 15, 409–423.CrossRefGoogle ScholarPubMed
Heilman, K. M., Voeller, K. K., and Nadeau, S. E. (1991). A possible pathophysiologic substrate of attention deficit hyperactivity disorder. Journal of Child Neurology, 6 (Suppl.), S76–S81.CrossRefGoogle ScholarPubMed
Hein, A. (1974). Prerequisite for development of visually guided reaching in the kitten. Brain Research, 71, 259–263.CrossRefGoogle ScholarPubMed
Henneberg, M. (1998). Evolution of the human brain: is bigger better?Clinical Experimental Pharmacology and Physiology, 25, 745–749.CrossRefGoogle Scholar
Henshilwood, C. S., d'Errico, F., Marean, C. W., Milo, R. G., and Yates, R. (2001). An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language. Journal of Human Evolution, 41, 631–678.CrossRefGoogle Scholar
Herman, L. M. (1986). Cognition and language competencies of bottlenosed dolphins. In Schusterman, R. J., Thomas, J. A. and Wood, F. G. (eds), Dolphin Cognition and Behavior: a Comparative Approach (pp. 221–252). Hillsdale: Erlbaum.Google Scholar
Hershman, J., Hershman, D. J., and Lieb, J. (1994). A brotherhood of tyrants. New York: Prometheus Books.Google Scholar
Heyes, M. P., Garnett, E. S., and Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sciences, 42, 1537–1542.CrossRefGoogle ScholarPubMed
Hills, T. T. (2006). Animal foraging and the evolution of goal-directed cognition. Cognitive Science, 30, 3–41.CrossRefGoogle ScholarPubMed
Hills, T. T., Todd, P. M., and Goldstone, R. L. (2007). Implications for human cognition from the evolution of animal foraging. Proceedings of the 19th Annual Meeting of the Human Behavior and Evolution Society, Williamsburg, VA.Google Scholar
Hobson, J. A. (1996). How the brain goes out of its mind. Endeavour, 20, 86–89.CrossRefGoogle ScholarPubMed
Hobson, J. A., Pace-Schott, E. F., and Stickgold, R. (2000). Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behavioral and Brain Sciences, 23, 793–1121.CrossRefGoogle Scholar
Hockett, C. F. (1960). Logical considerations in the study of animal communication. In Lanyon, W. E. and Tavolga, W. N. (eds), Animal Sounds and Communication (pp. 392–430). Washington, DC: American Institute of Biological Sciences.Google Scholar
Holloway, R. L. (2002). Brief communication: how much larger is the relative volume of Area 10 of the prefrontal cortex in humans?American Journal of Physical Anthropology, 118, 399–401.CrossRefGoogle ScholarPubMed
Holmberg, T. (2002). FAQs: Napoleon and the French Revolution. In the Napoleon Series (www.napoleonseries.org).
Hoppe, K. D. (1988). Hemispheric specialization and creativity. Psychiatric Clinics of North America, 11, 303–315.Google ScholarPubMed
Horgan, J. (1996). The End of Science. New York: Broadway Books.Google Scholar
Horner, A. J. (2006). The unconscious and the creative process. Journal of the American Academy of Psychoanalysis and Dynamic Psychiatry, 34, 461–469.CrossRefGoogle ScholarPubMed
Horrobin, D. F. (1998). Schizophrenia: the illness that made us human. Medical Hypotheses, 50, 259–288.CrossRefGoogle ScholarPubMed
Horvitz, J. C. (2000). Mesolimbic and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651–656.CrossRefGoogle ScholarPubMed
Hotson, J. R., Langston, E. B., and Langston, J. W. (1986). Saccade responses to dopamine in human MPTP-induced Parkinsonism. Annals of Neurology, 20, 456–463.CrossRefGoogle ScholarPubMed
Howard, G. S. (2000). Adapting human lifestyles for the 21st century. American Psychologist, 55, 509–515.CrossRefGoogle ScholarPubMed
Hull, E., Muschamp, J. W., and Sato, S. (2004). Dopamine and serotonin: influences on male sexual behavior. Physiology and Behavior, 83, 291–307.CrossRefGoogle ScholarPubMed
Huseman, C. A., Hassing, J. M., and Sibilia, M. G. (1986). Endogenous dopaminergic dysfunction: a novel form of human growth hormone deficiency and short stature. Journal of Clinical Endocrinology and Metabolism, 62, 484–490.CrossRefGoogle ScholarPubMed
Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens – olfactory tubercle complex. Brain Research Reviews, 56, 27–78.CrossRefGoogle ScholarPubMed
Ikemoto, S., and Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41.CrossRefGoogle ScholarPubMed
Ipsen, D. C. (1985). Isaac Newton: Reluctant Genius. Hillside: Enslow Publishers.Google Scholar
Isaacson, W. (2007). Einstein: His Life and Universe. Simon and Schuster.Google Scholar
Iversen, S. D. (1984). Cortical monoamines and behavior. In Descarries, L., Reader, T. R. and Jasper, H. H. (eds), Monoamine Innervation of Cerebral Cortex (pp. 321–351). New York: Liss.Google Scholar
Jablonski, N. G. (2004). The evolution of human skin and skin color. Annual Review of Anthropology, 33, 585–623.CrossRefGoogle Scholar
Jacoby, J. H., Greenstein, M., Sassin, J. F., and Weitzman, E. D. (1974). The effect of monoamine precursors on the release of growth hormone in the rhesus monkey. Neuroendocrinology, 14, 95–102.CrossRefGoogle ScholarPubMed
James, H. V. A., and Petraglia, M. D. (2005). Modern human origins and the evolution of behavior in the later Pleistocene record of South Asia. Current Anthropology, 46, S3–S16.CrossRefGoogle Scholar
Jancke, L., and Steinmetz, H. (1994). Auditory lateralization in monozygotic twins. International Journal of Neuroscience, 75, 57–64.CrossRefGoogle ScholarPubMed
Jankovic, J. (2002). Levodopa strengths and weaknesses. Neurology, 58, S19–S32.CrossRefGoogle ScholarPubMed
Jaspers, K. (1964). General Psychopathology (trans. Hoenig, J. and Hamilton, M. W.). Chicago: University of Chicago Press.Google Scholar
Jaynes, J. (1976). The Origins of Consciousness in the Breakdown of the Bicameral Mind. Boston: Houghton Mifflin.Google Scholar
Johnson, B. A. (2004). Role of the serotonergic system in the neurobiology of alcoholism: implications for treatment. CNS Drugs, 18, 1105–1118.CrossRefGoogle ScholarPubMed
Johnson, F. W. (1991). Biological factors and psychometric intelligence: a review. Genetic, Social and General Psychology Monographs, 117, 313–357.Google ScholarPubMed
Johnson, P. (2002). Napoleon. New York: Viking Penguin.Google Scholar
Joseph, R. (1999). Frontal lobe psychopathology: mania, depression, confabulation, catatonia, perseveration, obsessive compulsions, and schizophrenia. Psychiatry, 62, 138–172.CrossRefGoogle Scholar
Kalbag, A. S., and Levin, F. R. (2005). Adult ADHD and substance abuse: diagnostic and treatment issues. Substance Use and Misuse, 40, 1955–1981, 2043–2048.CrossRefGoogle ScholarPubMed
Kalsbeek, A., Bruin, J. P., Feenstra, M. G., Matthijssen, M. A., and Uylings, H. B. (1988). Neonatal thermal lesions of the mesolimbocortical dopaminergic projection decrease food-hoarding behavior. Brain Research, 475, 80–90.CrossRefGoogle ScholarPubMed
Kanazawa, S. (2003). Why productivity fades with age: the crime-genius connection. Journal of Research in Personality, 37, 257–272.CrossRefGoogle Scholar
Kane, M. J., and Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual differences perspective. Psychonomic Bulletin and Review, 9, 637–671.CrossRefGoogle Scholar
Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160, 13–23.CrossRefGoogle Scholar
Karlsson, J. L. (1974). Inheritance of schizophrenia. Acta Psychiatrica Scandinavica (Suppl. 247), 1–116.Google ScholarPubMed
Kaulins, A. (1979). Cycles in the birth of eminent humans. Cycles, 30, 9–15.Google Scholar
Kay, R. F.Cartmill, M., and Balow, M. (1998). The hypoglossal canal and the origin of human vocal behavior. Proceedings of the National Academy of Sciences, 95, 5417–5419.CrossRefGoogle Scholar
Keenan, J. P., Wheeler, M. A., Gallup, G. G., Jr., and Pascual-Leone, A. (2000). Self-recognition and the right prefrontal cortex. Trends in Cognitive Sciences, 4, 338–344.CrossRefGoogle ScholarPubMed
Keller, E. F. (2000). The Century of the Gene. Cambridge, MA:Harvard University Press.Google Scholar
Kelso, J. A. S., and Tuller, B. (1984). Converging evidence in support of common dynamical principles for speech and movement coordination. American Journal of Physiology, 246, R928–R935.Google ScholarPubMed
Kenealy, P. M. (1996). Pheylketonuria. In Beaumont, J. G., Kenealy, P. M., and Rogers, M. J. C. (eds), The Blackwell Dictionary of Neuropsychology (pp. 570–575). Cambridge, MA: Blackwell Publishers.Google Scholar
Kennedy, N., Boydell, J., Kalidindi, S., Fearon, P., Jones, P. B., Os, J., and Murray, R. M. (2005). Gender differences in incidence and age at onset of mania and bipolar disorder over a 35-year period in Camberwell, England. American Journal of Psychiatry, 162, 257–262.CrossRefGoogle Scholar
Kerbeshian, J., Burd, L., and Klug, M. G. (1995). Comorbid Tourette's disorder and bipolar disorder: an etiologic perspective. American Journal of Psychiatry, 152, 1646–1651.Google Scholar
Kimura, D. (1993). Neuromotor Mechanisms in Human Communication. New York: Oxford University Press.CrossRefGoogle Scholar
Kingston, J. (1990). Five exaptations in speech: reducing the arbitrariness of the constraints on language. Behavioral and Brain Sciences, 13, 738–739.CrossRefGoogle Scholar
Kiyohara, T., Hori, T., Shibata, M., Kakashima, T., and Osaka, T. (1984). Neuronal inputs to preoptic thermosensitive neurons – histological and electrophysiological mapping of central connections. Journal of Thermal Biology, 9, 21–26.CrossRefGoogle Scholar
Klawans, H. L. (1987). Chorea. Canadian Journal of the Neurological Sciences, 14, 536–540.CrossRefGoogle ScholarPubMed
Kluger, A. N., Siegfried, Z., and Ebstein, R. P. (2002). A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Molecular Psychiatry, 7, 712–717.CrossRefGoogle ScholarPubMed
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J., and Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.CrossRefGoogle ScholarPubMed
Koob, G. F., Riley, S. J., Smith, S. C., and Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus acumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. Journal of Comparative and Physiological Psychology, 92, 917–927.CrossRefGoogle Scholar
Koyama, S. (1995). Japanese dreams: culture and cosmology. Psychiatry and Clinical Neurosciences, 49, 99–101.CrossRefGoogle ScholarPubMed
Krantz, G. S. (1968). Brain size and hunting ability in earliest man. Current Anthropology, 9, 450–451.CrossRefGoogle Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J.-J., Hanni, C., Fortea, J., Rasilla, M., Bertranpetit, J., Rosas, A., and Paabo, S. (2007). The derived FoxP2 variant of modern humans was shared with Neandertals. Current Biology Online, October 18, 2007.CrossRef
Krystal, J. H., Perry, E. B., Gueorguieva, R., Belger, A., Madonick, S. H., Abi-Dargham, A., Cooper, T. B.Macdougall, L., Abi-Saab, W., and D'Souza, D. C. (2005). Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Archives of General Psychiatry, 62, 985–994.CrossRefGoogle ScholarPubMed
Kucharska-Pietura, K., Phillips, M. L., Gernand, W., and David, A. S. (2003). Perception of emotions from faces and voices following unilateral brain damage. Neuropsychologia, 41, 1082–1090CrossRefGoogle ScholarPubMed
Kushner, M. G., Riggs, D. S., Foa, E. B., and Miller, S. M. (1993). Perceived controllability and the development of posttraumatic stress disorder (PTSD) in crime victims. Behavioral Research and Therapy, 31, 105–110.CrossRefGoogle Scholar
Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14, 389–433.CrossRefGoogle Scholar
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., and Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.CrossRefGoogle Scholar
Laland, K. N., Odling-Smee, F. J., and Feldman, M. W. (1999). Evolutionary consequences of niche construction and their implications for ecology. Proceedings of the Natural Academy of Sciences, 96, 10242–10247.CrossRefGoogle ScholarPubMed
Lange, M., Thulesen, L., Feldt-Rasmussen, U., Skakkebaek, N. E., Vahl, N., Jorgensen, J. O., Christiansen, J. S., Poulsen, S. S., Sneppen, S. B., and Juul, A. (2001). Skin morphological changes in growth hormone deficiency and acromegaly. European Journal of Endocrinology, 145, 147–153.CrossRefGoogle ScholarPubMed
Larisch, R., Meyer, W., Klimke, A., Kehren, F., Vosberg, H., and Muller-Gartner, H. W. (1998). Left-right asymmetry of striatal dopamine D2 receptors. Nuclear Medicine Communications, 19, 781–787.CrossRefGoogle ScholarPubMed
Lauritsen, M. B., Pedersen, C. B., and Mortensen, P. B. (2005). Effects of familial risk factors and place of birth on the risk of autism: a nationwide register-based study. Journal of Child Psychology and Psychiatry, 46, 963–971.CrossRefGoogle ScholarPubMed
Leakey, R., and Lewin, R. (1995). The Sixth Extinction: Biodiversity and its Survival. New York: Doubleday.Google Scholar
Lee, A. C., Harris, J. P., Atkinson, E. A., Nithi, K., and Fowler, M. S. (2002). Dopamine and the representation of the upper visual field: evidence from vertical bisection errors in unilateral Parkinson's disease. Neuropsychologia, 40, 2023–2029.CrossRefGoogle ScholarPubMed
Lee, R. B. (1979). The!Kung San: Men, Women, and Work in a Foraging Society. Cambridge:Cambridge University Press.Google Scholar
Lee, T. F., Mora, F., and Myers, R. D. (1985). Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neuroscience and Biobehavioral Reviews, 9, 589–598.CrossRefGoogle ScholarPubMed
Leonard, W. R., and Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–281.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Lewis, D. A., and Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annual Review of Neuroscience, 25, 409–432.CrossRefGoogle ScholarPubMed
Li, D., Sham, P. C., Owen, M. J., and He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15, 2276–2284.CrossRefGoogle Scholar
Lickliter, R, and Honeycutt, H. (2003). Developmental dynamics: toward a biologically plausible evolutionary psychology. Psychological Bulletin, 129, 819–835.CrossRefGoogle Scholar
Lieberman, P., Kako, E., Friedman, J., Tajchman, G., Feldman, L. S., and Jiminez, E. B. (1992). Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease. Brain and Language, 43, 169–189.CrossRefGoogle ScholarPubMed
Lightman, A (2004). Einstein and Newton: genius compared. Scientific American, 290(9), 108–109.CrossRefGoogle Scholar
Litvan, I. (1996). Parkinson's disease. In Beaumont, J. G., Kenealy, P. M., and Rogers, M. J. C. (eds), The Blackwell Dictionary of Neuropsychology (pp. 559–564). Cambridge, MA: Blackwell Publishers.Google Scholar
Lock, A., and Colombo, M. (1996). Cognitive abilities in a comparative perspective. In Lock, A. and Peters, C. (eds), Handbook of Human Symbolic Evolution (pp. 595–643). Oxford: Clarendon.Google Scholar
Lombroso, P. J., Mack, G., Scahill, L., King, R. A., and Leckman, J. F. (1991). Exacerbation of Gilles de la Tourette's syndrome associated with thermal stress: a family study. Neurology, 41, 1984–1987.CrossRefGoogle ScholarPubMed
Lorber, J. (1983). Is your brain really necessary? In Voth, D. (ed.), Hydrocephalus im fruhen Kindesalter: Fortschritte der Grundlagenforschung, Diagnostik und Therapie (pp. 2–14). Stuttgart: Enke.Google Scholar
Luciana, M., Collins, P. F., and Depue, R. A. (1998). Opposing roles for dopamine and serotonin in the modulation of human memory. Cerebral Cortex, 8, 218–226.CrossRefGoogle Scholar
Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clark, D., Meehan, W., et al. (2005). Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science, 308, 1034–1036.CrossRefGoogle ScholarPubMed
McBrearty, S., and Brooks, A. S. (2000). The revolution that wasn't: a new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.CrossRefGoogle ScholarPubMed
McCarthy, S. (2003). Water scarcity could affect billions: is this the biggest crisis of all? Independent/UK, March 5, 2003 (www.commondreams.org/headlines03/0305–05.htm).
McClure, S. M., Laibson, D. I., Loewenstein, G., and Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.CrossRefGoogle ScholarPubMed
MacDonald, D. A., and Holland, D. (2002). Spirituality and complex partial epileptic–like signs. Psychological Reports, 91, 785–792.CrossRefGoogle ScholarPubMed
McDougall, I., Brown, F. K., and Fleagle, J. G., (2005). Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature, 433, 733–736.CrossRefGoogle ScholarPubMed
McElroy, S. L., Phillips, K. A., and Keck, P. E., Jr, . (1994). Obsessive compulsive spectrum disorder. Journal of Clinical Psychiatry (Suppl.), 33–51.Google ScholarPubMed
McGuigan, F. J. (1966). Thinking: Studies of Covert Language Processes. New York: Appleton-Century-Crofts.Google Scholar
McKelvey, J. R., Lambert, R., Mottron, L., and Shevell, M. I. (1995). Right-hemisphere dysfunction in Asperger's syndrome. Journal of Child Neurology, 10, 310–314.CrossRefGoogle ScholarPubMed
McNamara, K. J. (ed.) (1995). Evolutionary Change and Heterochrony. New York: Wiley.
Maia, D. P.Teixeira, A. L., Quintao Cunningham, M. C., and Cardoso, F. (2005). Obsessive compulsive behavior, hyperactivity, and attention deficit disorder in Sydenham chorea. Neurology, 64, 1799–1801.CrossRefGoogle ScholarPubMed
Mandel, J.-L. (1996). The human genome. In Changeux, J.-P. and Chavaillon, J. (eds), Origins of the Human Brain (pp. 94–126). Oxford: Clarendon.Google Scholar
Mandell, A. J. (1980). Toward a psychobiology of transcendance: God in the brain. In Davidson, J. M. and Davidson, R. J. (eds), The Psychobiology of Consciousness (pp. 379–464). New York: Plenum.Google Scholar
Mandler, G. (2001). Apart from genetics: what makes monozygotic twins similar?The Journal of Mind and Behavior, 22, 147–160.Google Scholar
Marcellis, M., Takei, N., and Os, J. (1999). Urbanization and risk for schizophrenia: does the effect operate before or around the time of illness onset?Psychological Medicine, 29, 1197–1203.CrossRefGoogle Scholar
Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I., and Williams, H. M. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.CrossRefGoogle ScholarPubMed
Markus, H., and Nurius, P. (1986). Possible selves. American Psychologist, 41, 954–969.CrossRefGoogle Scholar
Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227–242.CrossRefGoogle ScholarPubMed
Mecoy, L. (2002). Nature waits on fate of dam. Sacramento Bee, November 19, 2002 (www.arroyoseco.org/SB021119.htm).
Mega, M. S., and Cummings, J. L. (1994). Frontal-subcortical circuits and neuropsychiatric disorders. Journal of Neuropsychiatry and Clinical Neuroscience, 6, 358–370.Google ScholarPubMed
Meier, B. P., and Robinson, M. D. (2004). Why the sunny side is up: associations between affect and vertical position. Psychological Science, 15, 243–247.CrossRefGoogle ScholarPubMed
Meier, B. P.Hauser, D. J., Robinson, M. D., Friesen, C. K., and Schjeldahl, K. (2007). What's “up” with god? Vertical space as a representation of the divine. Journal of Personality and Social Pyschology, 93, 699–710.CrossRefGoogle ScholarPubMed
Mellars, P. (2006). Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proceedings of the National Academy of Sciences, 103, 9381–9386CrossRefGoogle Scholar
Melnick, M., Myrianthopoulos, N. C., and Christian, J. C. (1978). The effects of chorion type on variation in IQ in the NCPP twin population. American Journal of Human Genetics, 30, 425–433.Google ScholarPubMed
Miczek, K. A., Fish, E. W., Bold, J. F., and Almeida, R. M. M. (2002). Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology, 163, 434–458.CrossRefGoogle ScholarPubMed
Miller, M. T., Stromland, K., Ventura, L., Johansson, M., Bandim, J. M., and Gillberg, C. (2005). Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. International Journal of Developmental Neuroscience, 23, 201–219.CrossRefGoogle ScholarPubMed
Mintz, M., and Myslobodsky, M. S. (1983). Two types of hemisphere imbalance in hemi-Parkinsonism coded by brain electrical activity and electrodermal activity. In Myslobodsky, M. S. (ed.), Hemisyndromes: Psychology, Neurology, Psychiatry (pp. 213–238). San Diego: Academic Press.Google Scholar
Mithen, S. (1996). The Prehistory of the Mind: the Cognitive Origins of Art and Science. London: Thames and Hudson.Google Scholar
Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M., and Swann, A. C. (2001). Psychiatric aspects of impulsivity. American Journal of Psychiatry, 158, 1783–1793.CrossRefGoogle ScholarPubMed
Moldan, B., Hak, T., Kovanda, J., Havranek, M., and KušKova, P. (2004). Composite indicators of environmental sustainability. Paper presented at Statistics, Knowledge and Policy OECD World Forum on Key Indicators. Palermo, November 10–13, 2004 (www.oecd.org/dataoecd/43/48/33829383.doc+Moldan+2004+GDP+ecological+footprint&hl=en&gl=us&ct=clnk&cd=1).
Moll, J., Oliveira-Souza, R., Moll, F. T., Bramati, I. E., and Andreiuolo, P. A. (2002). The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arquivos de Neuro-Psiquiatria, 60, 900–905.CrossRefGoogle ScholarPubMed
Monchi, O., Ko, J. H., and Strafella, A. P. (2006). Striatal dopamine release during performance of executive functions: A[11C] raclopride PET study. Neuroimage, 33, 907–912.CrossRefGoogle Scholar
Moncrieff, J., Wessely, S., and Hardy, R. (2004). Active placebos versus antidepressants for depression. Cochrane Database System Review, (1): CD003012.
Moore, J. The aquatic ape theory: sink or swim? (www.aquaticape.org).
Morgan, E. (1997). The Aquatic Ape Hypothesis. London: Souvenir Press.Google Scholar
Morison, S. E. (1983). Admiral of the Ocean Sea: a Life of Christopher Columbus. Boston: Northeastern University Press.Google Scholar
Morneau, D. M., Macdonald, D. A., and Holland, C. J. (1996). A confirmatory study of the relation between self-reported complex partial epileptic signs, peak experiences and paranormal beliefs. British Journal of Clinical Psychology, 35, 627–630.CrossRefGoogle ScholarPubMed
Mozley, L. H., Gur, R. C., Mozley, P. D., and Gur, R. E. (2001). Striatal dopamine transporters and cognitive functioning in healthy men and women. American Journal of Psychiatry, 158, 1492–1499.CrossRefGoogle ScholarPubMed
Muir, H. (2003). Did Einstein and Newton have autism?New Scientist, 2393, 10.Google Scholar
Muldoon, M. F., Mackey, R. H., Korytkowski, M. T., Flory, J. D., Pollock, B. G., and Manuck, S. B. (2006). The metabolic syndrome is associated with reduced central serotonergic responsivity in healthy community volunteers. Journal of Clinical Endocrinology and Metabolism, 91, 718–721.CrossRefGoogle ScholarPubMed
Muller, N., Riedel, M., Zawta, P., Gunther, W., and Straube, A. (2002). Comorbidity of Tourette's syndrome and schizophrenia – biological and physiological parallels. Progress in Neuropsychopharmacology and Biological Psychiatry, 26, 1245–1252.CrossRefGoogle ScholarPubMed
Murphy, M. B. (2000). Dopamine: a role in the pathogenesis and treatment of hypertension. Journal of Human Hypertension, 14, S47–S50.CrossRefGoogle ScholarPubMed
Murrell, A., and Mingrone, M. (1994). Correlates of temporal perspective. Perceptual and Motor Skills, 78, 1331–1334.CrossRefGoogle ScholarPubMed
Muzio, J. N., Roffwarg, H. P., and Kaufman, E. (1966). Alterations in the nocturnal sleep cycle resulting from LSD. Electroencephalography and Clinical Neurophysiology, 21, 313–324.CrossRefGoogle ScholarPubMed
Mychack, P., Kramer, J. H., Boone, K. B., and Miller, B. L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56, S11–S15.CrossRefGoogle ScholarPubMed
Myers, D. H., and Davies, P. (1978). The seasonal incidence of mania and its relationship to climatic variables. Psychological Medicine, 8, 433–440.CrossRefGoogle ScholarPubMed
Nagano-Saito, A., Kato, T., Arahata, Y., Washimi, Y., Nakamura, A., Abe, Y., Yamada, T., Iwai, K., Hatano, K., Kawasumi, Y., Kachi, T., Dagher, A., and Ito, K. (2004). Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies. Neuroimage, 22, 553–561.CrossRefGoogle ScholarPubMed
Nagaraj, R., Singhi, P., and Malhi, P. (2006). Risperidone in children with autism: randomized, placebo-controlled, double-blind study. Journal of Child Neurology, 21, 450–455.CrossRefGoogle ScholarPubMed
Nagoshi, C. T., and Johnson, R. C. (1987). Between- vs. within-family analyses of the correlation of height and intelligence. Social Biology, 34, 110–113.Google ScholarPubMed
Nakasato, A., Nakatani, Y., Seki, Y., Tsujino, N., Umino, M., and Arita, H. (2008). Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism. Brain Research, 1193, 128–135.CrossRefGoogle Scholar
Narrow, W. E., Rae, D. S, Robins, L. N., and Regier, D. A. (2002). Revised prevalence estimates of mental disorders in the United States: using a clinical significance criterion to reconcile 2 surveys' estimates. Archives of General Psychiatry, 59, 115–123.CrossRefGoogle ScholarPubMed
Nasar, S. (1998). A Beautiful Mind: the Life of Mathematical Genius and Nobel Laureate John Nash. New York: Touchstone.Google Scholar
Nathanielsz, P. W. (1999). Life in the Womb: the Origin of Health and Disease. Ithaca:Promethean.Google Scholar
Foundation, National Science (1996). Federal Scientists and Engineers: 1989–1993 (NSF 95–336). Washington, DC: National Science Foundation.Google Scholar
National Science Foundation (1999). Scientist and Engineers Statistical Data System (SESTAT). http://srsstats.sbe.nsf.gov.
Nayate, A., Bradshaw, J. L., and Rinehart, H. J. (2005). Autism and Asperger's disorder: are they movement disorders involving the cerebellum and/or basal ganglia?Brain Research Bulletin, 67, 327–334.CrossRefGoogle ScholarPubMed
Nebes, R. D. (1974). Hemispheric specialization in commissurotomized man. Psychological Bulletin, 81, 1–14.CrossRefGoogle ScholarPubMed
Nelson, E. E., and Panksepp, J. (1998). Brain substrates of infant–mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neuroscience and Biobehavioral Reviews, 22, 437–452.CrossRefGoogle Scholar
Nelson, J. C., Portera, L., and Leon, A. C. (2005). Are there differences in the symptoms that respond to a selective serotonin or norepinephrine reuptake inhibitor?Biological Psychiatry, 57, 1535–1542.CrossRefGoogle ScholarPubMed
Newbury, D. F., Bonora, E., Lamb, J. A., Fisher, S. E., Lai, C. S., Baird, G., Jannoun, L., Slonims, V., Stott, C. M., Merricks, M. J., Bolton, P. F., Bailey, A. J., and Monaco, A. P., International Molecular Genetic Study of Autism Consortium. (2002). FOXP2 is not a major susceptibility gene for autism or specific language impairment. American Journal of Human Genetics, 70, 1318–1327.CrossRefGoogle Scholar
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67, 53–83.CrossRefGoogle ScholarPubMed
Niess, A. M., Feherenbach, E., Roecker, K., Lehmann, R., Opavsky, L., and Dickhuth, H. H. (2003). Individual differences in self-reported heat tolerance. Is there a link to the cardiocirculatory, thermoregulatory and hormonal response to endurance exercise in heat. Sports Medicine and Physical Fitness, 43, 386–392.Google Scholar
Nomura, Y., and Segawa, M. (2003). Neurology of Tourette's syndrome (TS) TS as a developmental dopamine disorder: a hypothesis. Brain and Development, 25 (Suppl. 1), S37–S42.CrossRefGoogle ScholarPubMed
Noonan, J. P., Coop, G., Kudaravalli, S., Smith, D., Krause, J., Alessi, J., Chen, F., Platt, D., Paabo, S., Pritchard, J. K., and Rubin, E. M. (2006). Sequencing and analysis of Neanderthal genomic DNA. Science, 314, 1068–1071.CrossRefGoogle ScholarPubMed
Noshirvani, H. F., Kasvikis, Y., Marks, I. M., Tsakiris, F., and Monteiro, W. O., (1991). Gender-divergent aetiological factors in obsessive-compulsive disorder. British Journal of Psychiatry, 158, 260–263.CrossRefGoogle ScholarPubMed
Nunneley, S. A. (1996). Thermal stress. In Dehart, R. L. (ed.), Fundamentals of Aerospace Medicine (2nd edn) (pp. 399–422). Baltimore: Williams & Wilkins.Google Scholar
O'Brien, J. M. (1992). Alexander the Great: the Invisible Enemy. London: Routledge.Google Scholar
O'Connell, J. F. (2007). How did modern humans displace Neanderthals? Insights from hunter-gatherer ethnography and archaeology. In Conard, N. (ed.), Neanderthals and Modern Humans Meet (pp. 43–64). Tübingen: Kerns Verlag.Google Scholar
O'Donovan, D. K. (1996). Hypothyroid nails and evolution. Lancet, 347, 1261–1262.CrossRefGoogle ScholarPubMed
Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., Kawashima, R., Fukuda, H., Itoh, M., and Yamadori, A. (2003). Thinking about the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage, 19, 1369–1380.CrossRefGoogle ScholarPubMed
Oldenziel, R. (2004). Making Technology Masculine: Men, Women and Modern Machines in America, 1870–1945. Amsterdam: Amsterdam University Press.Google Scholar
Ollat, H. (1992). Dopaminergic insufficiency reflecting cerebral ageing: value of a dopaminergic agonist, piribedil. Journal of Neurology, 239, S13–S16.Google ScholarPubMed
Olmstead, D. (2005). The age of autism: Amish ways. United Press International, June 7, 2005 (www.washtimes.com/upi-breaking/20050606–100328–8006r.htm).Google Scholar
Ongur, D., and Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–219.CrossRefGoogle ScholarPubMed
Ornstein, R. E. (1972). The Psychology of Consciousness. San Francisco: W. H. Freeman.Google Scholar
Oskamp, S. (2000). A sustainable future for humanity? How can psychology help?American Psychologist, 55, 496–508.CrossRefGoogle ScholarPubMed
Otto, M. W. (1992). Normal and abnormal information processing. A neuropsychological perspective on obsessive compulsive disorder. Psychiatric Clinics of North America, 15, 825–848.Google ScholarPubMed
Ozonoff, S., and Miller, J. N. (1996). An exploration of right-hemisphere contributions to the pragmatic impairments of autism. Brain and Language, 52, 411–434.CrossRefGoogle ScholarPubMed
Padavic, I., and Reskin, B. F. (2003). Women and Men at Work (2nd edn). Thousand Oaks: Pine Forge Press.Google Scholar
Pahnke, W. N. (1969). Psychedelic drugs and mystical experience. International Psychiatry Clinics, 5, 149–162.Google ScholarPubMed
Palit, G., Kumar, R., Gupta, M. B., Saxena, R. C., Patnaik, G. K., and Dhawan, B. N. (1997). Quantification of behaviour in social colonies of rhesus monkey. Indian Journal of Physiology and Pharmacology, 41, 219–226.Google ScholarPubMed
Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., and Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health and Place, 12, 203–209.CrossRefGoogle ScholarPubMed
Pani, L. (2000). Is there an evolutionary mismatch between the normal physiology of the human dopaminergic system and current environmental conditions in industrialized countries?Molecular Psychiatry, 5, 467–475.CrossRefGoogle ScholarPubMed
Panksepp, J. (1999). The affiliative playfulness and impulsivity of extraverts may not be dopaminergically mediated. Behavioral and Brain Sciences, 22, 533–534.CrossRefGoogle Scholar
Papolas, D. F., and Papolas, J. (2002). The Bipolar Child (rev. edn). New York: Broadway Books.Google Scholar
Paradiso, S., Robinson, R. G., and Arndt, S. (1996). Self-reported aggressive behavior in patients with stroke. Journal of Nervous and Mental Disease, 184, 746–753.CrossRefGoogle ScholarPubMed
Parke, B. (2003). Einstein: the Passions of a Scientist. New York: Prometheus Books.Google Scholar
Parsons, S., Mitchell, P., and Leonard, A. (2004). The use and understanding of virtual environments by adolescents with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 34, 449–466.CrossRefGoogle ScholarPubMed
Pelham, W. E., Murphy, D. A., Vannatta, K., Milich, R., Licht, B. G., Gnagy, E. M., Greenslade, K. E., Greiner, A. R., and Vodde-Hamilton, M. (1992). Methylphenidate and attributions in boys with attention-deficit hyperactivity disorder. Journal of Consulting and Clinical Psychology, 60, 282–292.CrossRefGoogle ScholarPubMed
Pepperberg, I. (1990). Conceptual abilities of some nonprimate species, with an emphasis on an African Grey parrot. In Parker, S. T. and Gibson, K. R. (eds), “Language” and Intelligence in Monkeys and Apes (pp. 459–407). New York: Cambridge University Press.Google Scholar
Perry, E. K., and Perry, R. H. (1995). Acetylcholine and hallucinations: disease-related compared to drug-related alterations in human consciousness. Brain and Cognition, 28, 240–258.CrossRefGoogle Scholar
Perry, R. J., Rosen, H. R., Kramer, J. H., Beer, J. S., Levenson, R. L., and Miller, B. L. (2001). Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase, 7, 145–160.CrossRefGoogle ScholarPubMed
Persinger, M. A. (1984). People who report religious experiences may also display enhanced temporal-lobe signs. Perceptual and Motor Skills, 58, 963–975.CrossRefGoogle ScholarPubMed
Persinger, M. A., and Fisher, S. D. (1990). Elevated, specific temporal lobe signs in a population engaged in psychic studies. Perceptual and Motor Skills, 71, 817–818.CrossRefGoogle Scholar
Persinger, M. A., and Makarec, K. (1987). Temporal lobe epileptic signs and correlative behaviors displayed by normal populations. Journal of General Psychology, 114, 179–195.CrossRefGoogle ScholarPubMed
Peters, M., Reimers, S., and Manning, J. T. (2006). Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: the BBC internet study. Brain and Cognition, 62, 177–189.CrossRefGoogle ScholarPubMed
Petronis, A. (2001). Human morbid genetics revisited: relevance of epigenetics. Trends in Genetics, 17, 142–146.CrossRefGoogle ScholarPubMed
Petty, F., Davis, L. L., Kabel, D., and Kramer, G. L. (1996). Serotonin dysfunction disorders: a behavioral neurochemistry perspective. Journal of Clinical Psychiatry, 57 (Suppl. 8), 11–16.Google ScholarPubMed
Pickett, E. R., Kuniholm, E., Protopapas, A., Friedman, J., and Lieberman, P. (1998). Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: a case study. Neuropsychologia, 6, 173–188.CrossRefGoogle Scholar
Pierce, R. C., Crawford, C. A., Nonneman, A. J., Mattingly, B. A., and Bardo, M. T. (1990). Effect of forebrain dopamine depletion on novelty-induced place preference behavior in rats. Pharmacology, Biochemistry and Behavior, 36, 321–325.CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, C., Muri, R. M., Ploner, C. J., Gaymard, B., and Rivaud-Pechoux, S. (2003). Cortical control of ocular saccades in humans: a model for motricity. Progress in Brain Research, 142, 3–17.CrossRefGoogle ScholarPubMed
Pillmann, F., Rohde, A., Ullrich, S., Draba, S., Sannemuller, U., and Marneros, A. (1999). Violence, criminal behavior, and the EEG: significance of left hemispheric focal abnormalities. Journal of Neuropsychiatry and Clinical Neuroscience, 11, 454–457.CrossRefGoogle ScholarPubMed
Pinker, S., and Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–784.CrossRefGoogle Scholar
Pliszka, S. R. (2005). The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 1385–1390.CrossRefGoogle ScholarPubMed
Poizner, H., and Kegl, J. (1993). Neural disorders of the linguistic use of space and movement. Annals of the New York Academy of Sciences, 682, 192–213.CrossRefGoogle ScholarPubMed
Poizner, H., Fookson, O. I., Berkinblit, M. B., Hening, W., Feldman, G., and Adamovich, S. (1998). Pointing to remembered targets in 3-D space in Parkinson's disease. Motor Control, 2, 251–277.CrossRefGoogle ScholarPubMed
Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., and Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 43–63.CrossRefGoogle ScholarPubMed
Prather, J. F., and Mooney, R. (2004). Neural correlates of learned song in the avian forebrain: simultaneous representation of self and others. Current Opinion in Neurobiology, 14, 496–502.CrossRefGoogle Scholar
Prescott, C. A., Johnson, R. C., and McArdle, J. J. (1999). Chorion type as a possible influence on the results and interpretation of twin study data. Twin Research, 2, 244–249.CrossRefGoogle ScholarPubMed
Previc, F. H. (1991). A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychological Review, 98, 299–334.CrossRefGoogle ScholarPubMed
Previc, F. H. (1993) Do the organs of the labyrinth differentially influence the sympathetic and parasympathetic systems?Neuroscence and Biobehavioral Reviews, 17, 397–404.CrossRefGoogle ScholarPubMed
Previc, F. H. (1996). Nonright-handedness, central nervous system and related pathology, and its lateralization: a reformulation and synthesis. Developmental Neuropsychology, 12, 443–515.CrossRefGoogle Scholar
Previc, F. H. (1998). The neuropsychology of 3-D space. Psychological Bulletin, 124, 123–164.CrossRefGoogle ScholarPubMed
Previc, F. H. (1999). Dopamine and the origins of human intelligence. Brain and Cognition, 41, 299–350.CrossRefGoogle ScholarPubMed
Previc, F. H. (2002). Thyroid hormone production in chimpanzees and humans: implications for the origins of human intelligence. American Journal of Physical Anthropology, 118, 402–403.CrossRefGoogle ScholarPubMed
Previc, F. H. (2004). An integrated neurochemical perspective on human performance measurement. In Ness, J. W., Tepe, V. and Ritzer, D. R. (eds), The Science and Simulation of Human Performance (pp. 327–390). Amsterdam: Elsevier.Google Scholar
Previc, F. H. (2006). The role of the extrapersonal brain systems in religious activity. Consciousness and Cognition, 15, 500–539.CrossRefGoogle ScholarPubMed
Previc, F. H. (2007). Prenatal influences on brain dopamine and their relevance to the rising incidence of autism. Medical Hypotheses, 68, 46–60.CrossRefGoogle ScholarPubMed
Previc, F. H., Declerck, C., and Brabander, B. (2005). Why your “head is in the clouds” during thinking: the relationship between cognition and upper space. Acta Psychologia, 118, 7–24.CrossRefGoogle ScholarPubMed
Primavesi, A. (1991). From Apocalypse to Genesis: Ecology, Feminism, and Christianity. Minneapolis: Fortress Press.Google Scholar
Purdon, S. E., Chase, T., and Moehr, E. (1996). Huntington's disease or chorea. In Beaumont, J. G., Kenealy, P. M. and Rogers, M. J. C. (eds), The Blackwell Dictionary of Neuropsychology (pp. 401–406). Cambridge, MA: Blackwell Publishers.Google Scholar
Pycock, C. J., Donaldson, I. M., and Marsden, C. D. (1975). Circling behaviour produced by unilateral lesions of the locus coeruleus in rats. Brain Research, 97, 317–329.CrossRefGoogle ScholarPubMed
Quadri, R., Comino, I., Scarzella, L., Cacioli, P., Zanone, M. M., Pipieri, A., Bergamasco, B., and Chiandussi, L. (2000). Autonomic nervous function in de novo parkinsonian patients in basal condition and after acute levodopa administration. Functional Neurology, 15, 81–86.Google ScholarPubMed
Rakic, P. (1996). Evolution of neocortical parcellation: the perspective from experimental neuroembryology. In Changeux, J.-P. and Chavaillon, J. (eds), Origins of the Human Brain (pp. 84–100). Oxford: Clarendon.Google Scholar
Rapoport, S. I. (1990). Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Research Reviews, 15, 267–294.CrossRefGoogle ScholarPubMed
Reeves, S. J., Grasby, P. M., Howard, R. J., Bantick, R. A., Asselin, M. C., and Mehta, M. A. (2005). A positron emission tomography (PET) investigation of the role of striatal dopamine (D2) receptor availability in spatial cognition. Neuroimage, 28, 216–226.CrossRefGoogle ScholarPubMed
Regehr, C., Hill, J., and Glancy, G. D. (2000). Individual predictors of traumatic reactions in firefighters. Journal of Nervous and Mental Disease, 188, 333–339.CrossRefGoogle ScholarPubMed
Reiss, M., Tymnik, G., Kogler, P., Kogler, , and Reiss, G. (1999). Laterality of hand, foot, eye, and ear in twins. Laterality, 4, 287–297.CrossRefGoogle ScholarPubMed
Ressler, K. J., Sullivan, S. L., and Buck, L. B. (1994). A molecular dissection of spatial patterning in the olfactory system. Current Opinion in Neurobiology, 4, 588–596.CrossRefGoogle ScholarPubMed
Reuter, M., Panksepp, J., Schnabel, N., Kellerhoff, N., Kempel, P., and Hennig, J. (2005). Personality and biological markers of creativity. European Journal of Personality, 19, 83–95.CrossRefGoogle Scholar
Richards, M. P., Petitt, P. B., Stiner, M. C., and Trinkaus, E. (2001). Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proceedings of the National Academy of Sciences, 98, 6528–6532.CrossRefGoogle ScholarPubMed
Richman, D. P., Stewart, R. M., Hutchinson, J. W., and Caviness, V. S. Jr. (1975). Mechanical model of brain convolutional development. Science, 189, 18–21.Google ScholarPubMed
Ridley, R. M., and Baker, H. F. (1982). Stereotypy in monkeys and humans. Psychological Medicine, 12, 61–72.CrossRefGoogle ScholarPubMed
Rihet, P., Possamai, C. A., Micallef-Roll, J., Blin, O., and Hasbroucq, T. (2002). Dopamine and human information processing: a reaction-time analysis of the effect of levodopa in healthy subjects. Psychopharmacology, 163, 62–77.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2000). Chemical neuromodulation of frontal-executive functions in humans and other animals. Experimental Brain Research, 133, 130–138.CrossRefGoogle ScholarPubMed
Robbins, T. W., and Everitt, B. J. (1982). Functional studies of the central catecholamines. International Review of Neurobiology, 23, 303–365.CrossRefGoogle ScholarPubMed
Robertson, M. M. (2003). Diagnosing Tourette syndrome: is it a common disorder?Journal of Psychosomatic Research, 55, 3–6.CrossRefGoogle ScholarPubMed
Robinson, P. D., Schutz, C. K., Macciardi, F., White, B. N., and Holden, J. J. A. (2001). Genetically determined low maternal serum dopamine β-hydroxylase levels and the etiology of autism spectrum disorders. American Journal of Medical Genetics, 100, 30–36.CrossRefGoogle ScholarPubMed
Robison, L. M., Skaer, T. L., Sclar, D. A., and Galin, R. S. (2002). Is attention deficit hyperactivity disorder increasing among girls in the US? Trends in diagnosis and the prescribing of stimulants. CNS Drugs, 16, 129–137.CrossRefGoogle ScholarPubMed
Rodriguez, P. F., Aron, A. R., and Poldrack, R. A. (2006). Ventral-striatal/nucleus-accumbens sensitivity to prediction errors during classification learning. Human Brain Mapping, 27, 306–313.CrossRefGoogle ScholarPubMed
Rosenberg, D. R., and Keshavan, M. S. (1998). Toward a neurodevelopmental model of obsessive-compulsive disorder. Biological Psychiatry, 43, 623–640.CrossRefGoogle Scholar
Rosenzweig, M. R., Breedlove, S. M., and Leiman, A. L. (2002). Biological psychology (3rd edn). Sunderland, MA: Sinauer Associates.Google Scholar
Rosse, R. B., Collins, J. P., Fay-Mccarthy, M., Alim, T. N., Wyatt, R. J., and Deutsch, S. I. (1994). Phenomenologic comparison of the idiopathic psychosis of schizophrenia and drug-induced cocaine and phencyclidine psychoses: a retrospective study. Clinical Neuropharmacology, 17, 359–369.CrossRefGoogle ScholarPubMed
Rosvold, H. E., and Mishkin, M. (1950). Evaluation of the effects of prefrontal lobotomy on intelligence. Canadian Journal of Psychology, 4, 122–126.CrossRefGoogle ScholarPubMed
Rotenberg, V. S. (1994). An integrative psychophysiological approach to brain hemisphere functions in schizophrenia. Neuroscience and Biobehavioral Reviews, 18, 487–395.CrossRefGoogle Scholar
Ruiz-Lozano, P., Ryan, A. K., and Izpisua-Belmonte, J. C. (2000). Left-right determination. Trends in Cardiovascular Medicine, 10, 258–262.CrossRefGoogle ScholarPubMed
Russell, A. J., Mataix-Cols, D., Anson, M., and Murphy, D. G. (2005). Obsessions and compulsions in Asperger syndrome and high-functioning autism. British Journal of Psychiatry, 186, 525–528.CrossRefGoogle ScholarPubMed
Sabbagh, M. A. (1999). Communicative intentions and language: evidence from right-hemisphere damage and autism. Brain and Language, 70, 29–69.CrossRefGoogle ScholarPubMed
Sachdev, P. (1998). Schizophrenia-like psychosis and epilepsy: the status of the association. American Journal of Psychiatry, 155, 325–336.CrossRefGoogle ScholarPubMed
Sahlin, M. (1972). Stone Age Economics. Chicago: Aldine and Atherton, Inc.Google Scholar
Sakai, L. M., Baker, L. A., Jacklin, C. N., and Shulman, I. (1991). Sex steroids at birth: genetic and environmental variation and covariation. Developmental Psychobiology, 24, 559–570.CrossRefGoogle ScholarPubMed
Salamone, J. D., and Correa, M. (2002). Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioral and Brain Research, 137, 3–25.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Mingote, S. M., and Weber, S. M. (2005). Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 5, 34–41.CrossRefGoogle ScholarPubMed
Santana, C., Martin, L., and Rodriguez-Diaz, M. (1994). Tyrosine ingestion during rat pregnancy alters postnatal development of dopaminergic neurons in the offspring. Brain Research, 635, 96–102.CrossRefGoogle ScholarPubMed
Sanua, V. D. (1983). Infantile autism and childhood schizophrenia: review of the issues from the sociocultural point of view. Social Science in Medicine, 17, 1633–1651.CrossRefGoogle ScholarPubMed
Sartorius, N., Jablensky, A.Korten, A., Ernberg, G., Anker, M., Cooper, J. E., and Day, R. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures. A preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders. Psychological Medicine, 16, 909–928.CrossRefGoogle ScholarPubMed
Saver, J. L., and Rabin, J. (1997). The neural substrates of religious experience. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 498–510.Google ScholarPubMed
Sawamoto, N., Honda, M., Hanakawa, T., Fukuyama, H., and Shibasaki, H. (2002). Cognitive slowing in Parkinson's disease: a behavioral evaluation independent of motor slowing. Journal of Neuroscience, 22, 5198–5203.CrossRefGoogle ScholarPubMed
Scherer, D. M. (2001). Adverse perinatal outcome of twin pregnancies according to chorionicity: review of the literature. American Journal of Perinatology, 18, 23–37.CrossRefGoogle Scholar
Schlemmer, R. F., Jr., Narasimhachari, N., and Davis, J. M. (1980). Dose-dependent behavioural changes induced by apomorphine in selected members of a primate social colony. Journal of Pharmacy and Pharmacology, 32, 285–289.CrossRefGoogle ScholarPubMed
Schmitt, J. A., Rameakers, J. G., Kruizinga, M. J., Bostel, M. P., Vuurman, E. F., and Reidel, W. J. (2002). Additional dopamine reuptake inhibition attenuates vigilance impairment induced by serotonin reuptake inhibition in man. Journal of Psychopharmacology, 16, 207–214.CrossRefGoogle ScholarPubMed
Schoenemann, P. T., Budinger, T. F., Sarich, V. M., and Wang, W. S. (2000). Brain size does not predict general cognitive ability within families. Proceedings of the National Academy of Sciences, 97, 4932–4937.CrossRefGoogle Scholar
Schuck, S., Bentue-Ferrer, D., Kleinermans, D., Reymann, J.-M., Polard, E., Gandon, J. M., and Allain, H. (2002). Psychomotor and cognitive effects of piribedil, a dopamine agonist, in young healthy volunteers. Fundamental and Clinical Pharmacology, 16, 57–65.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., and Montague, R. (1997). A neural substrate of prediction and reward. Science, 275, 1593 –1599.CrossRefGoogle ScholarPubMed
Schwart, R. G., Uretsky, N. J., and Bianchine, J. R. (1982). Prostaglandin inhibition of amphetamine-induced circling in mice. Psychopharmacology, 78, 317–321.CrossRefGoogle Scholar
Schwartz, B. (2004). The tyranny of choice. Scientific American, 290(4), 70–75.CrossRefGoogle Scholar
Seligman, M. (1975). Helplessness. San Fransisco: Freeman.Google ScholarPubMed
Semendeferi, K., Lu, A., Schenker, N., and Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–276.CrossRefGoogle Scholar
Senghas, A., Kita, S., and Ozyurek, A. (2004). Children creating core properties of language: evidence from an emerging sign language in Nicaragua. Science, 305, 1779–1782.CrossRefGoogle ScholarPubMed
Sevy, S., Hassoun, Y., Bechara, A., Yechiam, E., Napolitano, B., Burdick, K., Delman, H., and Malhotra, A. (2006). Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels. Psychopharmacology, 188, 228–235.CrossRefGoogle ScholarPubMed
Shapiro, T., and Hertzig, M. E. (1991). Social deviance in autism: a central integrative failure as a model for social nonengagement. Psychiatric Clinics of North America, 14, 19–32.Google ScholarPubMed
Shea, J. J. (2003). Neanderthals, competition, and the origin of modern human behavior in the Levant. Evolutionary Anthropology, 12, 173–187.CrossRefGoogle Scholar
Shipman, P. (1986). Scavenging or hunting in early hominids. Theoretical framework and tests. American Anthropologist, 88, 27–43.CrossRefGoogle Scholar
Sicotte, N. L, Woods, R. P., and Mazziotta, J. C. (1999). Handedness in twins: a meta-analysis. Laterality, 4, 265–286.CrossRefGoogle ScholarPubMed
Sierra, M., and Berrios, G. E. (1998). Depersonalization: neurobiological perspectives. Biological Psychiatry, 44, 898–908.CrossRefGoogle ScholarPubMed
Siever, L. J. (1994) Biologic factors in schizotypal personal disorders. Acta Psychiatrica, 384, 45–50.CrossRefGoogle ScholarPubMed
Simon, H., Scatton, B., and Moal, M. (1980). Dopaminergic A10 neurones are involved in cognitive functions. Nature, 286, 150–151.CrossRefGoogle ScholarPubMed
Simonton, D. K. (1994). Greatness: Who Makes History and Why. New York: Guilford Press.Google Scholar
Skoyles, J. R. (1999). Human evolution expanded brains to increase expertise capacity, not IQ. Psycholoquy, 10(002).Google Scholar
Smith, A., and Sugar, O. (1975). Development of above normal language and intelligence 21 years after left hemispherectomyNeurology, 25, 813–818.CrossRefGoogle ScholarPubMed
Smith, A. B., Taylor, E., Brammer, M., and Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21, 247–256.CrossRefGoogle ScholarPubMed
Solms, M., (2000). Dreaming and REM sleep are controlled by different brain mechanisms. Behavioral and Brain Sciences, 23, 793–1121.CrossRefGoogle ScholarPubMed
Spivak, M., and Epstein, M. (2001). Newton's psychosis. American Journal of Psychiatry, 158, 821–822.CrossRefGoogle ScholarPubMed
Stahlberg, O., Soderstrom, H., Rastam, M., and Gillberg, C. (2004). Bipolar disorder, schizophrenia, and other psychotic disorders in adults with childhood onset AD/HD and/or autism spectrum disorders. Journal of Neural Transmission, 111, 891–902.CrossRefGoogle ScholarPubMed
Stedman, H. H., Kozyak, B. W., Nelson, A., Thesier, D. M., Su, L. T., et al. (2004). Myosin gene mutation correlates with anatomical changes in the human lineage. Nature, 428, 415–418.CrossRefGoogle ScholarPubMed
Stenger, R. (2002). Study: universe could end in 10 billion years, CNN, September 18, 2002 (http://archives.cnn.com/2002/TECH/space/09/18/cosmic.crunch/index.html).
Stern, P. C. (2000). Psychology and the science of human-environment interactions. American Psychologist, 55, 523–530.CrossRefGoogle ScholarPubMed
Stromland, K., Nordin, V., Miller, M., Akerstrom, B., and Gillberg, C. (1994). Autism in thalidomide embryopathy: a population study. Developmental Medicine and Child Neurology, 36, 351–356.CrossRefGoogle ScholarPubMed
Suddendorf, T., and Corballis, M. (1997). Mental time travel and the evolution of the human mind. Genetic, Social and General Psychology Monographs, 123, 133–167.Google ScholarPubMed
Sundberg, N. D., Poole, M. E., and Tyler, L. E. (1983). Adolescents' expectations of future events: a cross-cultural study of Australians, Americans, and Indians. International Journal of Psychology, 18, 415–427.CrossRefGoogle Scholar
Sutoo, D., and Akiyama, K. (1996). The method by which exercise modifies brain function. Physiology and Behavior, 60, 177–181.CrossRefGoogle Scholar
Suzuki, T. (1981). How great will the stature of Japanese eventually become? Journal of Human Ergology, 10, 13–24.
Svebak, S. (1985). Serious-mindedness and the effect of self-induced respiratory changes upon parietal EEG. Biofeedback and Self-Regulation, 10, 49–62.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., and Koob, G. F. (1987). Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortico-striatal-pallidothalamic function. Behavioral and Brain Sciences, 10, 197–245.CrossRefGoogle Scholar
Szechtman, H., Talangbayan, H., and Eilam, D. (1993). Environmental and behavioral components of sensitization induced by the dopamine agonist quinpirole. Behavioral Pharmacology, 4, 405–410.CrossRefGoogle ScholarPubMed
Szechtman, H., Culver, K., and Eilam, D. (1999). Role of dopamine systems in obsessive-compulsive disorder (OCD): implications from a novel psychostimulant-induced animal model. Polish Journal of Pharmacology, 51, 55–61.Google ScholarPubMed
Tallal, P., Miller, S., and Fitch, R. H. (1993). Neurobiological basis of speech: a case for the preeminence of temporal processing. Annals of the New York Academy of Sciences, 682, 27–47.CrossRefGoogle ScholarPubMed
Tanaka, S., Kanzaki, R., Yoshibayashi, M., Kamiya, T., and Sugishita, M. (1999). Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry. Neuropsychologia, 37, 869–874.CrossRefGoogle ScholarPubMed
Taylor, C. R., and Rowntree, V. J. (1973). Temperature regulation and heat balance in running cheetahs: a strategy for sprinters?American Journal of Physiology, 224, 848–851.Google ScholarPubMed
Taylor, S. (2005). The Fall: the Evidence for a Golden Age, 6,000 Years of Insanity and the Dawning of a New Era. Oakland, CA: O Books.Google Scholar
Tekin, S., and Cummings, J. L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. Journal of Psychosomatic Research, 53, 647–654.Google Scholar
Templeton, A. R. (2002). Out of Africa again and again. Nature, 416, 45–51.CrossRefGoogle Scholar
Thomas, S. A., Matsumoto, A. M., and Palmiter, R. D. (1995). Noradrenaline is essential for mouse fetal development. Nature, 374, 643–646.CrossRefGoogle ScholarPubMed
Todorov, I. T. (2005). Einstein and Hilbert: the creation of general relativity. Colloquium lecture at the International University Bremen, March 15, 2005 (http://arxiv.org/PS_cache/physics/pdf/0504/0504179.pdf).
Toffler, A. (1970). Future Shock. New York: Random House.Google Scholar
Torrey, E. F., Miller, J., Rawlings, R., and Yolken, R. H. (1997). Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophrenia Research, 28, 1–38.CrossRefGoogle ScholarPubMed
Toth, N. (1985). Archaeological evidence for preferential right-handedness in the lower and middle Pleistocene and its possible implications. Journal of Human Evolution, 14, 607–614.CrossRefGoogle Scholar
Truett, G. E., Brock, J. W., Lidl, G. M., and Kloster, C. A. (1994). Stargazer (stg), new deafness mutant in the Zucker rat. Laboratory Animal Science, 44, 595–599.Google Scholar
Tucker, D. M., and Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 185–215.CrossRefGoogle ScholarPubMed
Tucker, T. J. and Kling, A. (1969). Preservation of delayed response following combined lesions of prefrontal and posterior association cortex in infant monkeys. Experimental Neurology, 23, 491–502.CrossRefGoogle Scholar
Census, U. S. Bureau. (2004). 2000 Census of Population and Housing: Population and Housing Counts (Pt 1). Washington, DC, Department of Commerce.Google Scholar
Schaik, C. (2006). Why are some animals so smart?Scientific American, 294(4), 64–71.CrossRefGoogle ScholarPubMed
Vanhaereny, M., d'Errico, F., Stringer, C., James, S. L., Todd, J. A., and Mienis, H. K. (2006). Middle Paleolithic shell beads in Israel and Algeria. Science, 312, 1785–1788.CrossRefGoogle ScholarPubMed
Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., and Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences, 92, 930–933.CrossRefGoogle Scholar
Vedantum, S. (2004). Antidepressant use of U.S. adults soars. Washington Post, December 3, 2004 (www.washingtonpost.com/wp-dyn/articles/A29751–2004Dec2.html).
Vernaleken, I., Weibrich, C., Siessmeier, T., Buchholz, H. G., Rosch, F., Heinz, A., Cumming, P., Stoeter, P., Bartenstein, P., and Grunder, G. (2007). Asymmetry in dopamine D(2/3) receptors of caudate nucleus is lost with age. Neuroimage, 34, 870–878.CrossRefGoogle ScholarPubMed
Viggiano, D., Vallone, D., Ruocco, L. A., and Sadile, A. G. (2003). Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neuroscience and Biobehaviornal Reviews, 27, 683–689.CrossRefGoogle Scholar
Villardita, C. (1985). Raven's colored progressive matrices and intellectual impairment in patients with focal brain damage. Cortex, 21, 627–634.CrossRefGoogle ScholarPubMed
Vingerhoets, G., Lange, F. P., Vandemaele, P., Deblaere, K., and Achten, E. (2002). Motor imagery in mental rotation: an fMRI study. Neuroimage, 17, 1623–1633.CrossRefGoogle Scholar
Volkmar, F. R. (2001). Pharmacological interventions in autism: theoretical and practical issues. Journal of Clinical Child Psychology, 30, 80–87.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, G.-J., Fowler, J. S., Moberg, P. J., Ding, Y.-S., Hitzemann, R., Smith, G., and Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349.Google ScholarPubMed
Volkow, N. D., Wang, G. J., Ma, Y., Fowler, J. S., Wong, C., Ding, Y. S., Hitzemann, R., Swanson, J. M., and Kalivas, P. (2005). Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. Journal of Neuroscience, 25, 3932–3939.CrossRefGoogle Scholar
Vollenweider, F. X., and Geyer, M. A. (2001). A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Research Bulletin, 56, 495–507.CrossRefGoogle ScholarPubMed
Haesler, A., Sajantila, A., and Paabo, S. (1996). The genetical archaeology of the human genome. Nature Genetics, 14, 135–140.CrossRefGoogle Scholar
Vuilleumier, P., Ortigue, S., and Brugger, P. (2004). The number space and neglect. Cortex, 40, 399–410.CrossRefGoogle ScholarPubMed
Wainwright, P. E. (2002). Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proceedings of the Nutrition Society, 61, 61–69.CrossRefGoogle Scholar
Waldmann, C., and Gunturkun, O. (1993). The dopaminergic innervation of the pigeon caudolateral forebrain: immunocytochemical evidence for a “prefrontal cortex” in birds?Brain Research, 600, 225–234.CrossRefGoogle Scholar
Walter, R. C., Buffer, R. T., Bruggemann, J. H., Guillaume, M. M. M., Berhe, S. M., Negassi, B., Libsekal, Y., Cheng, H., Edwards, R. W., Cosel, R., Neraudeau, D., and Gagnon, M. (2000). Early human occupation of the Red Sea coast of Eritrea during the last interglacial. Nature, 405, 65–69.CrossRefGoogle Scholar
Wanpo, H., Clochon, R., Yumin, G., Larick, R., Qiren, F., Schwarcz, H., Yonge, C., Vos, J., and Rink, W. (1995). Early Homo and associated artefacts from Asia. Nature, 378, 275–278.CrossRefGoogle Scholar
Watson, J. B., Mednick, S. A., Huttunen, M., and Wang, X. (1999). Prenatal teratogens and the development of adult mental illness. Developmental Psychopathology, 11, 457–466.CrossRefGoogle ScholarPubMed
Watts, J. (2002). Public health experts concerned about “hikikomori”. Lancet, 359, 1131.CrossRefGoogle Scholar
Waziri, R. (1980). Lateralization of neuroleptic-induced dyskinesia indicates pharmacologic asymmetry in the brain. Psychopharmacology, 68, 51–53.CrossRefGoogle Scholar
Webb, D. M., and Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning mammals. Journal of Heredity, 96, 212–216.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 169, 257–297.CrossRefGoogle ScholarPubMed
Weintraub, S. and Mesulam, M. M. (1983). Developmental learning disabilities of the right hemisphere. Emotional, interpersonal, and cognitive components. Archives of Neurology, 40, 463–468.CrossRefGoogle ScholarPubMed
Weiss, H., and Bradley, R. S. (2001). What drives social collapse?Science, 291, 609–610.CrossRefGoogle ScholarPubMed
Welsh, M. C., Pennington, B. F., Ozonoff, S., Rouse, B., and McCabe, E. R. B. (1990). Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Development, 61, 1697–1713.CrossRefGoogle ScholarPubMed
Wheeler, P. E. (1985). The loss of functional body hair in humans: the influence of thermal environment, body form and bipedality. Journal of Human Evolution, 14, 23–28.CrossRefGoogle Scholar
Whishaw, I. Q. (1993). Activation, travel distance, and environmental change influence food carrying in rats with hippocampal, medial thalamic and septal lesions: implications for studies on hoarding and theories of hippocampal function. Hippocampus, 3, 373–385.CrossRefGoogle ScholarPubMed
Whishaw, I. Q., and Dunnett, S. B. (1985). Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behavioural Brain Research, 18, 11–29.CrossRefGoogle ScholarPubMed
Whiten, A. (1990). Cause and consequences in the evolution of hominid brain size. Behavioral and Brain Sciences, 13, 367.CrossRefGoogle Scholar
Wilford, J. N. (1991). The Mysterious History of Columbus. New York: Knopf.Google Scholar
Wilkins, W. K., and Wakefield, J. 1995). Brain evolution and neurolinguistic preconditions. Behavioral and Brain Sciences, 18, 161–182.CrossRefGoogle Scholar
Wilson, C. (1985). A Criminal History of Mankind. London: Grafton.Google Scholar
Winstanley, C. A., Theobald, D. E. H., Dalley, J. W., and Robbins, T. W. (2005). Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications of impulse control disorders. Neuropsychopharmacology, 30, 669–682.CrossRefGoogle ScholarPubMed
Wittling, W., Block, A., Schweiger, E., and Genzel, S. (1998). Hemispheric asymmetry in sympathetic control of the human myocardium. Brain and Cognition, 38, 17–35.CrossRefGoogle Scholar
Wolford, G., Miller, M. B., and Gazzaniga, M. (2000). The left hemisphere's role in hypothesis formation. Journal of Neuroscience, 20 (RC64), 1–4.CrossRefGoogle ScholarPubMed
Woods, R. P. (1986). Brain asymmetries in situs inversus: a case report and review of the literature. Archives of Neurology, 43, 1083–1084.CrossRefGoogle ScholarPubMed
Wynn, T., and Coolidge, F. L. (2004). The expert Neanderthal mind. Journal of Human Evolution, 46, 467–487.CrossRefGoogle Scholar
Yates, B. J. (1996). Vestibular influences on the autonomic nervous system. Annals of the New York Academy of Sciences, 781, 458–473.CrossRefGoogle ScholarPubMed
Yates, B. J., and Bronstein, A. M. (2005). The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. Journal of Vestibular Research, 15, 119–129.Google ScholarPubMed
Young, S. N., and Leyton, M. (2002). The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacology, Biochemistry, and Behavior, 71, 857–865.CrossRefGoogle ScholarPubMed
Zhang, J., Wang, L., and Pitts, D. K. (1996). Prenatal haloperidol reduces the number of active midbrain dopamine neurons in rat offspring. Neurotoxicology and Teratology, 18, 49–57.CrossRefGoogle ScholarPubMed
Zhou, T. (1998). Energy consumption in the United States. In Elert, G. (ed.), The Physics Factbook (www.hypertextbook.com/facts).
Zihlman, A. L., and Cohn, B. A. (1988). The adaptive response of human skin to the savanna. Human Evolution, 3, 397–409.CrossRefGoogle Scholar
Zilhão, J., d'Errico, F., Bordes, J. G., Lenoble, A., Texier, J. P., and Rigaud, J. P. (2006). Analysis of Aurignacian interstratification at the Chatelperronian-type site and implications for the behavioral modernity of Neandertals. Proceedings of the National Academy of Sciences, 103, 12643–12648.CrossRefGoogle ScholarPubMed
Zimbardo, P. (2002). Time to take our time; looking to the future is important – and very American – but living in the present is vital – just think about it. Psychology Today, March/April 2002.Google Scholar
Zuckerman, M. (1984). Sensation-seeking: a comparative approach to a human trait. Behavioral and Brain Sciences, 7, 413–471.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Fred H. Previc
  • Book: The Dopaminergic Mind in Human Evolution and History
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581366.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Fred H. Previc
  • Book: The Dopaminergic Mind in Human Evolution and History
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581366.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Fred H. Previc
  • Book: The Dopaminergic Mind in Human Evolution and History
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511581366.008
Available formats
×