Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T18:29:34.166Z Has data issue: false hasContentIssue false

Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge

Published online by Cambridge University Press:  04 August 2010

Donna K. Blackman
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK
J. -Michael Kendall
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK
J. R. Cann
Affiliation:
University of Leeds
H. Elderfield
Affiliation:
University of Cambridge
A. S. Laughton
Affiliation:
Southampton Oceanography Centre
Get access

Summary

Seismic energy propagating through the mantle beneath an oceanic spreading centre develops a signature due both to the subaxial deformation field and to the presence of melt in the upwelling zone. Deformation of peridotite during mantle flow results in strong preferred orientation of olivine and significant seismic anisotropy in the upper 100 km of the mantle. Linked numerical models of flow, texture development and seismic velocity structure predict that regions of high anisotropy will characterize the subaxial region, particularly at slow-spreading mid-ocean ridges. In addition to mineral texture effects, the presence of basaltic melt can cause travel-time anomalies, the nature of which depend on the geometry, orientation and concentration of the melt. In order to illustrate the resolution of subaxial structure that future seismic experiments can hope to achieve, we investigate the teleseismic signature of a series of spreading centre models in which the mantle viscosity and melt geometry are varied. The P-wave travel times are not very sensitive to the geometry and orientation of melt inclusions, whether distributed in tubules or thin ellipsoidal inclusions. Travel time delays of 0.1–0.4 s are predicted for the melt distribution models tested. The P-wave effects of mineral texture dominate in the combined melt-plus-texture models. Thus, buoyancy-enhanced upwelling at a slow spreading ridge is characterized by 0.7–1.0 s early P-wave arrival times in a narrow axial region, while the models of plate-drivenonly flow predicts smaller advances (less than 0.5 s) over a broader region. In general S-wave travel times are more sensitive to the melt and show more obvious differences between melt present as tubules as opposed to thin disks, especially if a preferred disk orientation exists.

Type
Chapter
Information
Mid-Ocean Ridges
Dynamics of Processes Associated with the Creation of New Oceanic Crust
, pp. 1 - 16
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×