Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T15:08:24.349Z Has data issue: false hasContentIssue false

4 - Path analysis and maximum likelihood

Published online by Cambridge University Press:  10 December 2009

Bill Shipley
Affiliation:
Université de Sherbrooke, Canada
Get access

Summary

James Burke (1996), in his fascinating book, The pinball effect, demonstrates the curious and unexpected paths of influence leading to most scientific discoveries. People often speak of the ‘marriage of ideas’. If so then the most prolific intellectual offspring come, not from the arranged marriages preferred by research administrators, but from chance meetings and even illicit unions. The popular view of scientific discoveries as being linear causal chains from idea to solution is profoundly wrong; a better image would be a tangled web with many dead ends and broken strands. If most present knowledge depends on unlikely chains of events and personalities, then what paths of discovery have been deflected because the right people did not come together at the right time? Which historical developments in science have been changed because two people, each with half of the solution, were prevented from communicating due to linguistic or disciplinary boundaries? The second stage in the development of modern structural equation modelling is a case study in such historical contingencies and interdisciplinary incomprehension.

During the First World War, and in connection with the American war effort, Sewall Wright was on a committee allocating pork production to various US states on the basis of the availability of corn. He was confronted with a problem that had a familiar feel. Given a whole series of variables related to corn availability and pork production, how do all these variables interact to determine the relationship between supply and demand, and the fluctuations between these two? It occurred to him that his new method of path analysis might help.

Type
Chapter
Information
Cause and Correlation in Biology
A User's Guide to Path Analysis, Structural Equations and Causal Inference
, pp. 100 - 135
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×