Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-05T18:51:23.969Z Has data issue: false hasContentIssue false

27 - Applications to Relativistic Astrophysical Flows

Published online by Cambridge University Press:  15 January 2010

T. J. Chung
Affiliation:
University of Alabama, Huntsville
Get access

Summary

GENERAL

Relativistic theory is divided into two categories: special relativity and general relativity. In special relativity, we follow Einstein's postulate establishing the universality of the speed of light, c, relative to any unaccelerated observer, regardless of the motion of the light's source from the observer. General relativity arises as an extension to special relativity to describe the motion of particles evolving under the presence of gravitational fields. In order to take into account the effect of gravitation, however, we must abandon the Eulerian coordinates used in Newtonian fluid dynamics. Instead, it is necessary to invoke a curvilinear four-dimensional manifold (the spacetime) to represent particle's trajectories.

Many of the problems encountered in astrophysics are involved in the numerical solution of special or general relativistic fluid dynamics equations. Active research in this subject area has been in progress for the past 40 years. Earlier studies include structure and evolution of stars [Chandrasekhar, 1942; Aller and McLaughlin, 1965, among others]. Blackhole accretion flows have been studied extensively as evident from numerous publications [Paczynski and Wiita, 1980; Katz, 1980; Eggum et al., 1988; Hawley et al., 1984a,b; Clarke et al., 1985; Stella and Vietri, 1997; Bromley et al., 1998; Font et al., 1998a,b; Koide et al., 1999; Font et al., 1999]. Some of the recent activities include Gammaray bursts [Meszaros and Rees, 1993; Sari and Piran, 1998;Fishman and Meegan, 1995; and Panattescu and Meszros, 1998], explosive and jet phenomena [Norman, 1997], and astrophysical turbulence flows and instability [Bulbus and Hawley, 1998].

Despite these developments in “computational astrophysical fluid dynamics,” many difficulties remain unresolved. Among them are the rapidly rotating stars, detailed accretion diskstructure and evolution, evolving and interacting binaries, etc.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×