Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-29T04:18:04.174Z Has data issue: false hasContentIssue false

6 - General Aspects of Soliton Surfaces. Role of Gauge and Reciprocal Transformations

Published online by Cambridge University Press:  04 March 2010

C. Rogers
Affiliation:
University of New South Wales, Sydney
W. K. Schief
Affiliation:
University of New South Wales, Sydney
Get access

Summary

It was in 1973 that the fundamental AKNS spectral system was set down. This linear representation for a wide class of soliton equations yields up via compatibility conditions, in particular, the canonical sine-Gordon, mKdV, KdV and NLS equations. Hard upon this work, in 1976, came that of Lund and Regge and Pohlmeyer, which established a connection between the geometry of privileged classes of surfaces and soliton theory. Thus, what is now known as the Pohlmeyer-Lund-Regge solitonic system was generated via a Gauss-Mainardi-Codazzi system, with the corresponding Gauss-Weingarten equations viewed as a 3 × 3 linear representation. Moreover, Lund and Regge adopted a spinor formulation to make direct connection with 2 × 2 representations as embodied in the AKNS system.

The next major development in the geometry of soliton theory came in 1982 with the pioneering work of Sym when he introduced the notion of soliton surfaces. Thus, the soliton surfaces associated with the sine-Gordon and NLS equations are, in turn, the pseudospherical and Hasimoto surfaces. In general, the one-parameter class of soliton surfaces: Σ: r = r (u, v) associated with a particular solution of a solitonic equation is obtained by insertion of that solution into the relevant Gauss-Weingarten equations and integration thereof to determine the position vector r. However, this direct integration approach may be circumvented by an ingenious method described in. This Sym-Tafel procedure depends crucially on the presence of a ‘spectral parameter’ in the linear representation for the soliton equation in question.

Type
Chapter
Information
Bäcklund and Darboux Transformations
Geometry and Modern Applications in Soliton Theory
, pp. 204 - 265
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×