Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T02:24:17.758Z Has data issue: false hasContentIssue false

5 - Complex fluids

Published online by Cambridge University Press:  25 January 2010

M. Samimy
Affiliation:
Ohio State University
K. S. Breuer
Affiliation:
Brown University, Rhode Island
L. G. Leal
Affiliation:
University of California, Santa Barbara
P. H. Steen
Affiliation:
Cornell University, New York
Get access

Summary

Interface motion in a vibrated granular layer

Granular materials are now recognized as a distinct state of matter, and studies of their behavior form a fascinating interdisciplinary branch of science. The intrinsic dissipative nature of the interactions between the constituent macroscopic particles gives rise to several basic properties specific to granular substances, setting granular matter apart from the conventional gaseous, liquid, or solid states.

Thin layers of granular materials subjected to vertical vibration exhibit a diversity of patterns. The particular pattern is determined by the interplay between driving frequency f and the acceleration amplitude Γ. Interfaces in vibrated granular layers, existing for large enough amplitude of vibration, separate large domains of flat layers oscillating with opposite phase. These two phases are related to the period-doubling character of the flat layer motion at large plate acceleration. Interfaces are either smooth or “decorated” by periodic undulations depending on parameters of vibration. An additional subharmonic driving results in a controlled displacement of the interface with respect to the center of the experimental cell. The speed and the direction of the interface motion are sensitive to the phase and amplitude of the subharmonic driving.

The image sequence above shows interface nucleation and propagation towards the center of the cell, with dimensionless time tf labeled in each image. The interface forms at the right side wall of the cell due to small-amplitude phase-shifted subharmonic driving. After the additional driving stops, the interface moves towards the center, creating small-scale localized structures in the process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×