Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T18:27:55.302Z Has data issue: false hasContentIssue false

14 - Electronic structure of strongly correlated electron systems

Published online by Cambridge University Press:  20 November 2009

Uichiro Mizutani
Affiliation:
Nagoya University, Japan
Get access

Summary

Prologue

There exists a family of solids, in which the electron–electron interaction plays so substantial a role that the one-electron approximation fails. This is known as the strongly correlated electron system. Historically, De Boer and Verwey were the first to point out, as early as in 1937, that NiO in the NaCl structure should be metallic, since the Fermi level falls in the middle of the Ni-3d band. This already posed serious difficulty in the one-electron band calculations at that time, since NiO is known to exist as a transparent insulator having a band gap of a few eV. Peierls noted in the same year that this difficulty stemmed from the neglect of the repulsive interaction between the electrons and that the electron–electron interaction must be treated beyond the Hartree–Fock one-electron approximation.

Various transition metal oxides, including NiO and various layered perovskite cuprates, the latter being known to undergo a transition to the superconducting state upon carrier doping, have now been recognized as solids typical of a strongly correlated electron system. Their electronic structures and electron transport properties have been extensively studied in the last ten years, i.e., the 1990s. In this chapter, we introduce first the concept of the Fermi liquid theory, which justified the one-electron approximation for electrons near the Fermi level in ordinary metals and alloys, and then extend our discussion to cases where the one-electron approximation fails because of the electron–electron interaction. The Hubbard model is introduced as a model appropriate to describe the short-range motion of electrons transferring from one atomic site to another in competion with the on-site repulsive Coulomb interaction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×