Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T01:34:05.348Z Has data issue: false hasContentIssue false

10 - Highly oscillatory problems

Published online by Cambridge University Press:  04 December 2009

Benedict Leimkuhler
Affiliation:
University of Leicester
Sebastian Reich
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Hamiltonian systems often exhibit dynamical phenomena covering a vast range of different time scales. In this chapter, we will discuss systems with two well separated time scales. More specifically, we consider systems for which the fast motion is essentially oscillatory. Such systems can arise from very different applications such as celestial or molecular dynamics and they might manifest themselves in very different types of Hamiltonian equations. Hence, the discussion in this chapter is necessarily limited to special cases. However, the basic principles and ideas have a much wider range of applicability.

A standard integrator, whether symplectic or not, will, in general, have to use a stepsize that resolves the oscillations in the fast system and, hence, one might be forced to use very small timesteps in comparison to the slow dynamics which is of primary interest. However, in special cases, one might be able to individually exactly solve the fast oscillatory and the slow system. Following the idea of splitting methods, this suggests to compose these two exact propagators and to apply a stepsize that is large with respect to the period of the fast oscillations. Such a method is then called a large timestep (LTS) method. Often the fast oscillations cannot be integrated analytically. A natural idea for the construction of an LTS method is then to assign different timesteps to different parts of the system. This approach is called multiple timestepping (MTS) and can often even be implemented such that the overall timestepping procedure still generates a symplectic map. We will explain the basic idea of symplectic LTS/MTS methods in Section 10.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×