Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T20:18:05.424Z Has data issue: false hasContentIssue false

11 - Preferences Constructed From Dynamic Microprocessing Mechanisms

Published online by Cambridge University Press:  05 June 2012

Jerome R. Busemeyer
Affiliation:
Professor of Psychology and Cognitive Science, Indiana University
Joseph G. Johnson
Affiliation:
Assistant Professor of Psychology, Miami University
Ryan K. Jessup
Affiliation:
Ph.D. candidate in psychology and cognitive science, Indiana University, Bloomington
Sarah Lichtenstein
Affiliation:
Decision Research. Oregon
Paul Slovic
Affiliation:
Decision Research, Oregon
Get access

Summary

THE COMPUTATIONAL MODELING APPROACH

Decision researchers have struggled for a long time with the fact that preferences are highly changeable and vary in complex ways across contexts and tasks. For example, reversals have been observed when preferences are measured using binary versus triadic choice sets or when preferences are measured by choice versus price methods. Several theoretical approaches have been developed to understand this puzzling variability in preferences. One approach is to modify the classic utility model by allowing the weights or values that enter the utility function to change across contexts or tasks. For example, Tversky, Sattath, and Slovic (1988) believe that the decision weights for attributes change across choice versus price tasks. A second approach is to use different heuristic rules to form preferences, depending on task and context. For example, Payne, Bettman, and Johnson (1993) propose that decision makers switch from compensatory to noncompensatory types of rules when the number of options increases or as time pressure increases. Both of these approaches are well established and have made a large impact on decision research.

This chapter presents a computational approach to understanding how preferences change across contexts and tasks. According to this approach, preferences are constructed from a dynamic process that takes decision contexts as inputs and generates task responses as outputs. Computational models are formed by a collection of microprocessing units, each of which performs an elementary cognitive or affective evaluation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×