Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-12T23:01:06.958Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 January 2010

George R. McGhee
Affiliation:
Rutgers University, New Jersey
Get access
Type
Chapter
Information
The Geometry of Evolution
Adaptive Landscapes and Theoretical Morphospaces
, pp. 185 - 196
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, S. C. (1989). Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology, 15, 147–164.CrossRefGoogle Scholar
Ackerly, S. C. (1992). The structure of ontogenetic variation in the shell ofPecten. Palaeontology, 35, 847–867.Google Scholar
Alberch, P. (1982). Developmental constraints in evolutionary processes. In Evolution and Development, ed. Bonner, J. T., pp. 313–332. Berlin: Springer Verlag.CrossRefGoogle Scholar
Alberch, P. (1989). The logic of monsters: evidence for internal constraint in development and evolution. Geobios, mémoire spécial, 12, 21–57.CrossRefGoogle Scholar
Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica, 84, 5–11.CrossRefGoogle ScholarPubMed
Alberch, P. and Gale, E. A. (1985). A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution, 39, 8–23.CrossRefGoogle ScholarPubMed
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.CrossRefGoogle Scholar
Antonovics, J. and Tienderen, P. H. (1991). Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution, 6, 166–168.CrossRefGoogle ScholarPubMed
Arnold, S. J., Pfrender, M. E., and Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. C. (2004). Origination, extinction, and mass depletions in marine diversity. Paleobiology, 30, 522–542.2.0.CO;2>CrossRefGoogle Scholar
Bateson, W. (1896). Materials for the Study of Variation. Baltimore: Johns Hopkins University Press.Google Scholar
Bayer, U. and McGhee, G. R. Jr. (1984). Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17, 1–16.CrossRefGoogle Scholar
Bayer, U. and McGhee, G. R. Jr. (1985). Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors (ammonite replacements in the German Lower and Middle Jurassic). In Sedimentary and Evolutionary Cycles, eds. Bayer, U. and Seilacher, A., pp. 164–220. Berlin: Springer Verlag.CrossRefGoogle Scholar
Berger, W. H. (1969). Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology, 43, 1369–1383.Google Scholar
Blomberg, S. P. and Garland, T. (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.CrossRefGoogle Scholar
Bonner, J. T. (1982). Evolution and Development: Report of the Dahlem Workshop on Evolution and Development, Berlin 1981. Berlin: Springer Verlag.CrossRefGoogle Scholar
Bookstein, F. L. (1977). The study of shape transformation after D'Arcy Thompson. Mathematical Biosciences, 43, 177–219.CrossRefGoogle Scholar
Bookstein, F. L. (1997). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.Google Scholar
Brasier, M. D. (1980). Microfossils. London: George Allen and Unwin.Google Scholar
Cain, A. J. (1977). Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philosophical Transactions of the Royal Society of London (B: biological sciences), 277, 377–428.CrossRefGoogle ScholarPubMed
Callebaut, W. and Rasskin-Gutman, D. (2005). Modularity: Understanding the Development and Evolution of Natural Complex Systems. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Cattin, M.-F., Bersier, L.-F., Banašek-Richter, C., Baltensperger, R., and Gabriel, J.-P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.CrossRefGoogle ScholarPubMed
Chamberlain, J. A. Jr. (1976). Flow patterns and drag coefficients of cephalopod shells. Palaeontology, 19, 539–563.Google Scholar
Chamberlain, J. A. Jr. (1981). Hydromechanical design of fossil cephalopods. Systematics Association Special Volume, 18, 289–336.Google Scholar
Checa, A. G., Okamoto, T., and Keupp, H. (2002). Abnormalities as natural experiments: a morphologic model for coiling regulation in planispiral ammonites. Paleobiology, 28, 127–138.2.0.CO;2>CrossRefGoogle Scholar
Cheetham, A. H. and Hayek, L. C. (1983). Geometric consequences of branching growth in adeoniform Bryozoa. Paleobiology, 9, 240–260.CrossRefGoogle Scholar
Ciampaglio, C. N. (2002). Determining the role that ecological and develop-mental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4, 170–188.CrossRefGoogle Scholar
Conway Morris, S. (1998). The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford: Oxford University Press.Google Scholar
Conway Morris, S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cook, T. A. (1914). The Curves of Life. London: Constable and Company.Google Scholar
Cortie, M. B. (1989). Models for mollusc shape. South African Journal of Science, 85, 454–460.Google Scholar
Cubo, J. (2004). Pattern and process in constructional morphology. Evolution and Development, 6, 131–133.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Davoli, F. and Russo, F. (1974). Una metodologia paleontometrica basata sul modello di Raup:verifica sperimentale su rappresentanti follili del gen. Subula Schumacher. Bollettino della Società Paleontologica Italiana, 13, 108–121.Google Scholar
Dawkins, R. (1996). Climbing Mount Improbable. New York: W. W. Norton and Co.Google Scholar
Dennett, D. C. (1996). Darwin's Dangerous Idea. New York: Simon and Schuster.Google Scholar
Dobzhanski, T. (1970). Genetics of the Evolutionary Process. New York: Columbia University Press.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. (1996). Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 22, 219–240.CrossRefGoogle Scholar
Eble, G. J. (2000). Theoretical morphology: state of the art. Paleobiology, 26, 520–528.2.0.CO;2>CrossRefGoogle Scholar
Eble, G. J. (2003). Developmental morphospaces and evolution. In Evolutionary Dynamics:Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 33–63. Oxford: Oxford University Press.Google Scholar
Ellers, O. (1993). A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace. Proceedings of the Royal Society of London, B254, 123–129.CrossRefGoogle Scholar
Ellison, A. M. and Niklas, K. J. (1988). Branching patterns of Salicornia europaea (Chenopodiaceae) at different successional stages: a comparison of theoretical and real plants. American Journal of Botany, 75, 501–512.CrossRefGoogle Scholar
Ferguson, S. A. (2002). Methodology in evolutionary psychology. Biology and Philosophy, 17, 635–650.CrossRefGoogle Scholar
Fisher, R. A. (1941). Average excess and average effect of a gene substitution. Annals of Eugenics, 11, 53–63.CrossRefGoogle Scholar
Foley, J. and Dam, A. (1982). Fundamentals of Interactive Computer Graphics. Reading, MA: Addison Wesley.Google Scholar
Fortey, R. A. (1983). Geometric constraints in the construction of graptolite stipes. Paleobiology, 9, 116–125.CrossRefGoogle Scholar
Funk, and Wagnall, (1963). Standard College Dictionary. New York: Harcourt, Brace and World, Inc.Google Scholar
Futuyma, D. (1998). Evolutionary Biology. Sunderland (MA): Sinauer Associates, Inc.Google Scholar
Gärdenfors, P. (2000). Conceptual Spaces: the Geometry of Thought. Cambridge, MA: MIT Press.Google Scholar
Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307–312.CrossRefGoogle ScholarPubMed
Gavrilets, S. (1999). A dynamical theory of speciation on holey adaptive landscapes. American Naturalist, 154, 1–22.CrossRefGoogle ScholarPubMed
Gavrilets, S. (2003). Evolution and speciation in a hyperspace: the roles of neutrality, selection, mutation, and random drift. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 135–162. Oxford: Oxford University Press.Google Scholar
Gavrilets, S. and Gravner, J. (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. Journal of Theoretical Biology, 184, 51–64.CrossRefGoogle ScholarPubMed
Goodwin, B. C. (1963). Temporal Organization in Cells. London: Academic Press.Google Scholar
Gould, S. J. (1976). D'Arcy Thompson and the science of form. In Topics in the Philosophy of Biology, eds. Grene, M. and Mendelsohn, E., pp. 66–97. Dortrecht: D. Reidel.Google Scholar
Gould, S. J. (1989). Wonderful Life. New York: W. W. Norton.Google Scholar
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17, 411–423.CrossRefGoogle Scholar
Gould, S. J. (1993). How to analyze Burgess Shale disparity – a reply to Ridley. Paleobiology, 19, 522–523.CrossRefGoogle Scholar
Gould, S. J. (1995). A task for paleobiology at the threshold of majority. Paleobiology, 21, 1–14.CrossRefGoogle Scholar
Hammer, Ø. and Bucher, H. (2005). Models for the morphogenesis of the molluscan shell. Lethaia, 38, 111–122.CrossRefGoogle Scholar
Hertel, F. and Lehman, N. (1998). A randomized nearest-neighbor approach for assessment of character displacement: the vulture guild as a model. Journal of Theoretical Biology, 190, 51–61.CrossRefGoogle Scholar
Hickman, C. S. (1993). Theoretical design space: a new paradigm for the analysis of structural diversity. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 169–182.Google Scholar
Honda, H. and Fisher, J. B. (1978). Tree branch angle: maximizing effective leaf area. Science, 199, 888–890.CrossRefGoogle ScholarPubMed
Hutchinson, J. M. C. (1999). But which morphospace to use?Trends in Ecology and Evolution, 14, 414.CrossRefGoogle Scholar
Jablonski, D. (2005). Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 504–519.CrossRefGoogle Scholar
Kauffman, S. A. (1993). The Origins of Order. Oxford: Oxford University Press.Google Scholar
Kauffman, S. A. (1995). At Home in the Universe. Oxford: Oxford University Press.Google Scholar
Keller, E. F. (2002). Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.Google Scholar
Kendrick, D. C. (2007). Theoretical morphology of crinoid calyxes. Paleobiology, in press.Google Scholar
Kershaw, S. and Riding, R. (1978). Parameterization of stromatoporoid shape. Lethaia, 11, 233–242.CrossRefGoogle Scholar
Kohn, A. J. and Riggs, A. C. (1975). Morphometry of the Conus shell. Systematic Zoology, 24, 346–359.CrossRefGoogle Scholar
Korn, D. (2000). Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary. Paläontologische Zeitschrift, 74, 247–257.CrossRefGoogle Scholar
Kuhn-Schnyder, E. and Rieber, H. (1986). Handbook of Paleozoology. Baltimore: Johns Hopkins University Press.Google Scholar
McCartney, K. and Loper, D. E. (1989). Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus. Paleobiology, 15, 283–298.CrossRefGoogle Scholar
McCartney, K. and Loper, D. E. (1992). Optimal models of skeletal morphology for the silicoflagellate genus Corbisema. Micropaleontology, 38, 87–93.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1980a). Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology, 6, 57–76.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1980b). Shell geometry and stability strategies in the biconvex Brachiopoda. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1980(3), 155–184.Google Scholar
McGhee, G. R. Jr. (1988). The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology, 14, 250–257.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1991). Theoretical morphology: the concept and its applications. In Analytical Paleobiology, eds. Gilinsky, N. L. and Signor, P. W., pp. 87–102. Short Courses in Paleontology No. 4, the Paleontological Society and the Univeristy of Tennessee, Knoxville.Google Scholar
McGhee, G. R. Jr. (1995). Geometry of evolution in the biconvex Brachiopoda: morphological effects of mass extinction. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 197, 357–382.Google Scholar
McGhee, G. R. Jr. (1999). Theoretical Morphology: the Concept and Its Applications. New York: Columbia University Press.Google Scholar
McGhee, G. R. Jr. (2001a). Exploring the spectrum of existent, nonexistent and impossible biological form. Trends in Ecology and Evolution, 16, 172–173.CrossRefGoogle Scholar
McGhee, G. R. Jr. (2001b). The question of spiral axes and brachiopod shell growth: a comparison of morphometric techniques. Paleobiology, 27, 716–723.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. (2006). Exploring the spectrum of existent, nonexistent, and impossible biological form: a research program. In Modeling Biology: Structures, Behaviors, Evolution, eds. Laubichler, M. and G. B. Müller, pp. in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
McGhee, G. R. Jr. and McKinney, F. K. (2000). A theoretical morphologic analysis of convergently evolved erect helical colony form in the Bryozoa. Paleobiology, 26, 556–577.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. and McKinney, F. K. (2002). A theoretical morphologic analysis of ecomorphologic variation in Archimedes helical colony form. Palaios, 17, 556–570.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. and Starcher, R. W. (2006). Geometric models of lophophore shape and arrangement in extinct modular organisms. Journal of Paleontology, in press.Google Scholar
McGhee, G. R. Jr., Bayer, U., and Seilacher, A. (1991). Biological and evolutionary responses to transgressive-regressive cycles. In Cycles and Events in Stratigraphy, eds. Einsele, G., Ricken, W., and A. Seilacher, pp. 696–708. Berlin: Springer Verlag.Google Scholar
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. (2004). Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 289–297.CrossRefGoogle Scholar
McGowan, A. J. (2004). The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology, 30, 369–395.2.0.CO;2>CrossRefGoogle Scholar
McHenry, M. J. and Patek, S. N. (2004). The evolution of larval morphology and swimming performance in ascidians. Evolution, 58, 1209–1224.CrossRefGoogle ScholarPubMed
Mack, R. N. (2003). Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions. International Journal of Plant Science, 164(3 Supplement), S185–S196.CrossRefGoogle Scholar
McKinney, F. K. and McGhee, G. R. Jr. (2003). Evolution of erect helical colony form in the Bryozoa: phylogenetic, functional, and ecological factors. Biological Journal of the Linnean Society, 80, 360–367.CrossRefGoogle Scholar
McKinney, F. K. and McGhee, G. R. Jr. (2004). Erratum: Evolution of erect helical colony form in the Bryozoa. Biological Journal of the Linnean Society, 81, 619–620.CrossRefGoogle Scholar
McKinney, F. K. and Raup, D. M. (1982). A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula. Paleobiology, 8, 101–112.CrossRefGoogle Scholar
McKitrick, M. C. (1993). Phylogenetic constraint in evolutionary theory: has it any explanatory power?Annual Review of Ecology and Systematics, 24, 307–330.CrossRefGoogle Scholar
Maclaurin, J. (2003). The good, the bad and the impossible. Biology and Philosophy, 18, 463–476.CrossRefGoogle Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
Merks, R. M. H., Hoekstra, A. G., Kaandorp, J. A., Sloot, P. M. A., and Hogeweg, P. (2006). Problem-solving environments for biological morphogenesis. Computing in Science and Engineering, 8(1), 61–72.CrossRefGoogle Scholar
Meyer, A. (2003). There and back again. Nature, 424, 255.CrossRefGoogle Scholar
Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Müller, G. B. and Newman, S. A. (2003). Origination of Organismal Form: Beyond the Gene in Deveopmental and Evolutionary Biology. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Müller, G. B. and Newman, S. A. (2005). The innovation triad: an evodevo agenda. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 487–503.CrossRefGoogle Scholar
Müller, G. B. and Wagner, G. P. (1991). Novelty in evolution: restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.CrossRefGoogle Scholar
Newman, M. E. J. and Palmer, R. G. (2003). Modeling Extinction. Oxford: Oxford University Press.Google Scholar
Niklas, K. J. (1986). Computer-simulated plant evolution. Scientific American, 254 (March), 78–86.CrossRefGoogle Scholar
Niklas, K. J. (1997a). Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology, 23, 63–76.CrossRefGoogle Scholar
Niklas, K. J. (1997b). The Evolutionary Biology of Plants. Chicago: University of Chicago Press.Google Scholar
Niklas, K. J. (2004). Computer models of early land plant evolution. Annual Review of Earth and Planetary Sciences, 32, 47–66.CrossRefGoogle Scholar
Niklas, K. J. (2006). Optimization and early land plant evolution. In Modeling Biology: Structures, Behavior, Evolution, eds. Laubichler, M. and Müller, G. B., in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Niklas, K. J. and Kerchner, V. (1984). Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology, 10, 79–101.CrossRefGoogle Scholar
Okamoto, T. (1988). Analysis of heteromorph ammonoids by differential geometry. Palaeontology, 31, 35–52.Google Scholar
Olsen, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago: University of Chicago Press.Google Scholar
Oster, G. F., Shubin, N., Murray, J. D., and Alberch, P. (1988). Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution, 42, 862–884.CrossRefGoogle ScholarPubMed
Popov, I. Y. (2002). “Periodical systems” in biology (a historical issue). Verhandlungen zur Geschichte und Theorie der Biologie, 9, 55–68.Google Scholar
Rasskin-Gutman, D. (2003). Boundary constraints for the emergence of form. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 305–322. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Rasskin-Gutman, D. (2005). Modularity: jumping forms within morphospace. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 207–219. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Rasskin-Gutman, D. and Buscalioni, A. D. (2001). Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology, 27, 59–78.2.0.CO;2>CrossRefGoogle Scholar
Rasskin-Gutman, D. and Izpisúa-Belmonte, J. C. (2004). Theoretical morphology of developmental asymmetries. BioEssays, 26, 405–412.CrossRefGoogle ScholarPubMed
Raup, D. M. (1961). The geometry of coiling in gastropods. Proceedings of the National Academy of Sciences (USA), 47, 602–609.CrossRefGoogle ScholarPubMed
Raup, D. M. (1966). Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40, 1178–1190.Google Scholar
Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41, 43–65.Google Scholar
Raup, D. M. and Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147, 1294–1295.CrossRefGoogle ScholarPubMed
Raup, D. M., McGhee, G. R. Jr., and McKinney, F. K. (2006). Source code for theoretical morphologic simulation of helical colony form in the Bryozoa. Palaeontologia Electronica, 9(2); http://palaeo-electronica.org/paleo/2006_2/helical/index.html.Google Scholar
Reif, W.-E. (1980). A model of morphogenetic processes in the dermal skeleton of elasmobranchs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 159, 339–359.Google Scholar
Rex, M. A. and Boss, K. J. (1976). Open coiling in recent gastropods. Malacologia, 15, 289–297.Google Scholar
Rice, S. H. (1997). The analysis of ontogenetic trajectories: when a change in size or shape is not heterochrony. Proceedings of the National Academy of Sciences USA, 94, 907–912.CrossRefGoogle Scholar
Richtsmeier, J. T. and Lele, S. (1993). A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biological Reviews, 68, 381–411.CrossRefGoogle ScholarPubMed
Ridley, M. (1996). Evolution. Cambridge (MA): Blackwell Science.Google Scholar
Russell, E. S. (1916). Form and Function: a Contribution to the History of Animal Morphology. Chicago: University of Chicago Press (1982 Reprint).Google Scholar
Saunders, W. B. and Swan, A. R. H. (1984). Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology, 10, 195–228.CrossRefGoogle Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. V. (2004). The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology, 30, 19–43.2.0.CO;2>CrossRefGoogle Scholar
Savazzi, E. (1985). SHELLGEN: A BASIC program for the modeling of molluscan shell ontogeny and morphogenesis. Computers and Geosciences, 11, 521–530.CrossRefGoogle Scholar
Savazzi, E. (1987). Geometric and functional constraints on bivalve shell morphology. Lethaia, 20, 293–306.CrossRefGoogle Scholar
Savazzi, E. (1990). C programs for displaying shaded three-dimensional objects on a PC. Computers and Geosciences, 16, 195–209.CrossRefGoogle Scholar
Savazzi, E. (1993). C++ classes for theoretical shell morphology. Computers and Geosciences, 19, 931–964.CrossRefGoogle Scholar
Schindel, D. E. (1990). Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation? In Causes of Evolution, eds. Ross, R. A. and Allmon, W. D., pp. 270–304. Chicago: University of Chicago Press.Google Scholar
Schwenk, K. (1995). A utilitarian approach to constraint. Zoology, 98, 251–262.Google Scholar
Signes, M., Bijma, J., Hemleben, C., and Ott, R. (1993). A model for planktic foraminiferal shell growth. Paleobiology, 19, 71–91.CrossRefGoogle Scholar
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution. New York: Columbia University Press.Google Scholar
Snoad, N. and Nilsson, M. (2003). Quasispecies evolution on dynamic fitness landscapes. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 273–289. Oxford: Oxford University Press.Google Scholar
Solé, R. (2002). Modelling macroevolutionary patterns: an ecological perspective. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 312–337. Berlin: Springer Verlag.CrossRefGoogle Scholar
Solé, R. and Goodwin, B. (2000). Signs of Life: How Complexity Pervades Biology. New York: Basic Books.Google Scholar
Stadler, P. F. (2002). Fitness landscapes. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 183–204. Berlin: Springer Verlag.CrossRefGoogle Scholar
Stadler, B. M. R. and Stadler, P. F. (2004). The topology of evolutionary biology. In Modeling in Molecular Biology, eds. Ciobanu, G. and Rozenberg, G., pp. 267–286. Berlin: Springer Verlag.CrossRefGoogle Scholar
Stadler, B. M. R., Stadler, P. F., Wagner, G. P., and Fontana, W. (2001). The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213, 241–274.CrossRefGoogle ScholarPubMed
Starcher, R. W. and McGhee, G. R. Jr. (2000). Fenestrate theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct Bryozoa. Paleobiology, 26, 116–136.2.0.CO;2>CrossRefGoogle Scholar
Starcher, R. W. and McGhee, G. R. Jr. (2002). Theoretical morphology of modular organisms: geometric constraints of branch and dissepiment width and spacing in fenestrate bryozoans. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 223, 79–122.Google Scholar
Starcher, R. W. and McGhee, G. R. Jr. (2003). Fenestrate graptolite theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct hemichordates. Journal of Paleontology, 77, 360–367.CrossRefGoogle Scholar
Stone, J. R. (1996). Computer simulated shell shape and size variation in the Caribbean land snail genus Cerion: a test of geometrical constraints. Evolution, 50, 341–347.Google ScholarPubMed
Stone, J. R. (1998). Ontogenic tracks and evolutionary vestiges in morphospace. Biological Journal of the Linnean Society, 64, 223–238.CrossRefGoogle Scholar
Stone, J. R. (1999). Using a mathematical model to test the null hypothesis of optimal shell construction by four marine gastropods. Marine Biology, 134, 397–403.CrossRefGoogle Scholar
Stone, J. R. (2002). Delayed prezygotic isolating mechanisms: evolution with a twist. Proceedings of the Royal Society of London, 269, 861–865.CrossRefGoogle ScholarPubMed
Stone, J. R. (2004). Nonoptimal shell forms as overlapping points in functional and theoretical morphospaces. American Malacological Bulletin, 18, 129–134.Google Scholar
Strathmann, R. R. (1978). Progressive vacating of adaptive types during the Phanerozoic. Evolution, 32, 907–914.CrossRefGoogle ScholarPubMed
Streidter, G. F. (2003). Epigenesis and evolution of brains: from embryonic divisions to functional systems. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 287–303. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Swan, A. R. H. (1990). A computer simulation of evolution by natural selection. Journal of the Geological Society of London, 147, 223–228.CrossRefGoogle Scholar
Swan, A. R. H. (1999). Computer models of fossil morphology. In Numerical Palaeobiology, ed. Harper, D. A. T., pp. 157–179. London: John Wiley and Sons Ltd.Google Scholar
Swan, A. R. H. and Kershaw, S. (1994). A computer model for skeletal growth of stromatoporoids. Palaeontology, 37, 409–423.Google Scholar
Thom, R. (1975). Structural Stability and Morphogenesis: an Outline of a General Theory of Models. Reading, MA: W. A. Benjamin, Inc.Google Scholar
Thomas, R. D. K. (2005). Hierarchial integration of modular structures in the evolution of animal skeletons. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 239–258. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Thomas, R. D. K. and Reif, W.-E. (1993). The skeleton space: a finite set of organic designs. Evolution, 47, 341–360.CrossRefGoogle ScholarPubMed
Thomas, R. D. K., Shearman, R. M., and Stewart, G. W. (2000). Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288, 1239–1242.CrossRefGoogle ScholarPubMed
Thompson, D'A. W. (1917). On Growth and Form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thompson, D'A. W. (1942). On Growth and Form. Cambridge: Cambridge University Press.Google Scholar
Tyszka, J. (2006). Morphospace of foraminiferal shells: results from the moving reference model. Lethaia, 39, 1–12.Google Scholar
Tyszka, J. and Topa, P. (2005). A new approach to modeling of foraminiferal shells. Paleobiology, 31, 522–537.CrossRefGoogle Scholar
Ubukata, T. (2000). Theoretical morphology of hinge and shell form in Bivalvia: geometric constraints derived from space conflict between umbones. Paleobiology, 26, 606–624.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2001). Stacking increments: a new model and morphospace for the analysis of bivalve shell growth. Historical Biology, 15, 303–321.CrossRefGoogle Scholar
Ubukata, T. (2003a). A theoretical morphologic analysis of bivalve ligaments. Paleobiology, 29, 369–380.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2003b). Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology, 29, 480–491.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2005). Theoretical morphology of bivalve shell sculptures. Paleobiology, 31, 643–655.CrossRefGoogle Scholar
Valen, L. (1973). A new evolutionary theory. Evolutionary Theory, 1, 1–30.Google Scholar
Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–428.CrossRefGoogle Scholar
Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–173.CrossRefGoogle Scholar
Waddington, C. H. (1957). The Strategy of the Genes: a Discussion of some Aspects of Theoretical Biology. London: Allen and Unwin.Google Scholar
Waddington, C. H. (1975). The Evolution of an Evolutionist. Ithaca: Cornell University Press.Google Scholar
Wagner, G. P. (2001). What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology, 291, 305–309.CrossRefGoogle ScholarPubMed
Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle ScholarPubMed
Ward, P. (1980). Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology, 6, 32–43.CrossRefGoogle Scholar
Waters, J. A. (1977). Quantification of shape by use of Fourier analysis: the Mississippian blastoid genus Pentremites. Paleobiology, 3, 288–299.CrossRefGoogle Scholar
Williamson, P. G. (1981). Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, 293, 437–443.CrossRefGoogle Scholar
Wilson, E. O. and Bossert, W. H. (1971). A Primer of Population Biology. Sunderland: Sinauer.Google Scholar
Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media, Inc.Google Scholar
Wray, G. A. (2002). Do convergent developmental mechanisms underlie convergent phenotypes?Brain, Behavior and Evolution, 59, 327–336.CrossRefGoogle ScholarPubMed
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics, 1, 356–366.Google Scholar
Zwieniecki, M. A., Boyce, C. K., and Holbrook, N. M. (2004). Functional design space of single-veined leaves: role of tissue hydraulic properties in constraining leaf size and shape. Annals of Botany, 94, 507–513.CrossRefGoogle ScholarPubMed
Ackerly, S. C. (1989). Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology, 15, 147–164.CrossRefGoogle Scholar
Ackerly, S. C. (1992). The structure of ontogenetic variation in the shell ofPecten. Palaeontology, 35, 847–867.Google Scholar
Alberch, P. (1982). Developmental constraints in evolutionary processes. In Evolution and Development, ed. Bonner, J. T., pp. 313–332. Berlin: Springer Verlag.CrossRefGoogle Scholar
Alberch, P. (1989). The logic of monsters: evidence for internal constraint in development and evolution. Geobios, mémoire spécial, 12, 21–57.CrossRefGoogle Scholar
Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica, 84, 5–11.CrossRefGoogle ScholarPubMed
Alberch, P. and Gale, E. A. (1985). A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution, 39, 8–23.CrossRefGoogle ScholarPubMed
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.CrossRefGoogle Scholar
Antonovics, J. and Tienderen, P. H. (1991). Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution, 6, 166–168.CrossRefGoogle ScholarPubMed
Arnold, S. J., Pfrender, M. E., and Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. C. (2004). Origination, extinction, and mass depletions in marine diversity. Paleobiology, 30, 522–542.2.0.CO;2>CrossRefGoogle Scholar
Bateson, W. (1896). Materials for the Study of Variation. Baltimore: Johns Hopkins University Press.Google Scholar
Bayer, U. and McGhee, G. R. Jr. (1984). Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17, 1–16.CrossRefGoogle Scholar
Bayer, U. and McGhee, G. R. Jr. (1985). Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors (ammonite replacements in the German Lower and Middle Jurassic). In Sedimentary and Evolutionary Cycles, eds. Bayer, U. and Seilacher, A., pp. 164–220. Berlin: Springer Verlag.CrossRefGoogle Scholar
Berger, W. H. (1969). Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology, 43, 1369–1383.Google Scholar
Blomberg, S. P. and Garland, T. (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.CrossRefGoogle Scholar
Bonner, J. T. (1982). Evolution and Development: Report of the Dahlem Workshop on Evolution and Development, Berlin 1981. Berlin: Springer Verlag.CrossRefGoogle Scholar
Bookstein, F. L. (1977). The study of shape transformation after D'Arcy Thompson. Mathematical Biosciences, 43, 177–219.CrossRefGoogle Scholar
Bookstein, F. L. (1997). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.Google Scholar
Brasier, M. D. (1980). Microfossils. London: George Allen and Unwin.Google Scholar
Cain, A. J. (1977). Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philosophical Transactions of the Royal Society of London (B: biological sciences), 277, 377–428.CrossRefGoogle ScholarPubMed
Callebaut, W. and Rasskin-Gutman, D. (2005). Modularity: Understanding the Development and Evolution of Natural Complex Systems. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Cattin, M.-F., Bersier, L.-F., Banašek-Richter, C., Baltensperger, R., and Gabriel, J.-P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.CrossRefGoogle ScholarPubMed
Chamberlain, J. A. Jr. (1976). Flow patterns and drag coefficients of cephalopod shells. Palaeontology, 19, 539–563.Google Scholar
Chamberlain, J. A. Jr. (1981). Hydromechanical design of fossil cephalopods. Systematics Association Special Volume, 18, 289–336.Google Scholar
Checa, A. G., Okamoto, T., and Keupp, H. (2002). Abnormalities as natural experiments: a morphologic model for coiling regulation in planispiral ammonites. Paleobiology, 28, 127–138.2.0.CO;2>CrossRefGoogle Scholar
Cheetham, A. H. and Hayek, L. C. (1983). Geometric consequences of branching growth in adeoniform Bryozoa. Paleobiology, 9, 240–260.CrossRefGoogle Scholar
Ciampaglio, C. N. (2002). Determining the role that ecological and develop-mental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4, 170–188.CrossRefGoogle Scholar
Conway Morris, S. (1998). The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford: Oxford University Press.Google Scholar
Conway Morris, S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cook, T. A. (1914). The Curves of Life. London: Constable and Company.Google Scholar
Cortie, M. B. (1989). Models for mollusc shape. South African Journal of Science, 85, 454–460.Google Scholar
Cubo, J. (2004). Pattern and process in constructional morphology. Evolution and Development, 6, 131–133.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Davoli, F. and Russo, F. (1974). Una metodologia paleontometrica basata sul modello di Raup:verifica sperimentale su rappresentanti follili del gen. Subula Schumacher. Bollettino della Società Paleontologica Italiana, 13, 108–121.Google Scholar
Dawkins, R. (1996). Climbing Mount Improbable. New York: W. W. Norton and Co.Google Scholar
Dennett, D. C. (1996). Darwin's Dangerous Idea. New York: Simon and Schuster.Google Scholar
Dobzhanski, T. (1970). Genetics of the Evolutionary Process. New York: Columbia University Press.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. (1996). Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 22, 219–240.CrossRefGoogle Scholar
Eble, G. J. (2000). Theoretical morphology: state of the art. Paleobiology, 26, 520–528.2.0.CO;2>CrossRefGoogle Scholar
Eble, G. J. (2003). Developmental morphospaces and evolution. In Evolutionary Dynamics:Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 33–63. Oxford: Oxford University Press.Google Scholar
Ellers, O. (1993). A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace. Proceedings of the Royal Society of London, B254, 123–129.CrossRefGoogle Scholar
Ellison, A. M. and Niklas, K. J. (1988). Branching patterns of Salicornia europaea (Chenopodiaceae) at different successional stages: a comparison of theoretical and real plants. American Journal of Botany, 75, 501–512.CrossRefGoogle Scholar
Ferguson, S. A. (2002). Methodology in evolutionary psychology. Biology and Philosophy, 17, 635–650.CrossRefGoogle Scholar
Fisher, R. A. (1941). Average excess and average effect of a gene substitution. Annals of Eugenics, 11, 53–63.CrossRefGoogle Scholar
Foley, J. and Dam, A. (1982). Fundamentals of Interactive Computer Graphics. Reading, MA: Addison Wesley.Google Scholar
Fortey, R. A. (1983). Geometric constraints in the construction of graptolite stipes. Paleobiology, 9, 116–125.CrossRefGoogle Scholar
Funk, and Wagnall, (1963). Standard College Dictionary. New York: Harcourt, Brace and World, Inc.Google Scholar
Futuyma, D. (1998). Evolutionary Biology. Sunderland (MA): Sinauer Associates, Inc.Google Scholar
Gärdenfors, P. (2000). Conceptual Spaces: the Geometry of Thought. Cambridge, MA: MIT Press.Google Scholar
Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307–312.CrossRefGoogle ScholarPubMed
Gavrilets, S. (1999). A dynamical theory of speciation on holey adaptive landscapes. American Naturalist, 154, 1–22.CrossRefGoogle ScholarPubMed
Gavrilets, S. (2003). Evolution and speciation in a hyperspace: the roles of neutrality, selection, mutation, and random drift. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 135–162. Oxford: Oxford University Press.Google Scholar
Gavrilets, S. and Gravner, J. (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. Journal of Theoretical Biology, 184, 51–64.CrossRefGoogle ScholarPubMed
Goodwin, B. C. (1963). Temporal Organization in Cells. London: Academic Press.Google Scholar
Gould, S. J. (1976). D'Arcy Thompson and the science of form. In Topics in the Philosophy of Biology, eds. Grene, M. and Mendelsohn, E., pp. 66–97. Dortrecht: D. Reidel.Google Scholar
Gould, S. J. (1989). Wonderful Life. New York: W. W. Norton.Google Scholar
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17, 411–423.CrossRefGoogle Scholar
Gould, S. J. (1993). How to analyze Burgess Shale disparity – a reply to Ridley. Paleobiology, 19, 522–523.CrossRefGoogle Scholar
Gould, S. J. (1995). A task for paleobiology at the threshold of majority. Paleobiology, 21, 1–14.CrossRefGoogle Scholar
Hammer, Ø. and Bucher, H. (2005). Models for the morphogenesis of the molluscan shell. Lethaia, 38, 111–122.CrossRefGoogle Scholar
Hertel, F. and Lehman, N. (1998). A randomized nearest-neighbor approach for assessment of character displacement: the vulture guild as a model. Journal of Theoretical Biology, 190, 51–61.CrossRefGoogle Scholar
Hickman, C. S. (1993). Theoretical design space: a new paradigm for the analysis of structural diversity. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 169–182.Google Scholar
Honda, H. and Fisher, J. B. (1978). Tree branch angle: maximizing effective leaf area. Science, 199, 888–890.CrossRefGoogle ScholarPubMed
Hutchinson, J. M. C. (1999). But which morphospace to use?Trends in Ecology and Evolution, 14, 414.CrossRefGoogle Scholar
Jablonski, D. (2005). Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 504–519.CrossRefGoogle Scholar
Kauffman, S. A. (1993). The Origins of Order. Oxford: Oxford University Press.Google Scholar
Kauffman, S. A. (1995). At Home in the Universe. Oxford: Oxford University Press.Google Scholar
Keller, E. F. (2002). Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.Google Scholar
Kendrick, D. C. (2007). Theoretical morphology of crinoid calyxes. Paleobiology, in press.Google Scholar
Kershaw, S. and Riding, R. (1978). Parameterization of stromatoporoid shape. Lethaia, 11, 233–242.CrossRefGoogle Scholar
Kohn, A. J. and Riggs, A. C. (1975). Morphometry of the Conus shell. Systematic Zoology, 24, 346–359.CrossRefGoogle Scholar
Korn, D. (2000). Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary. Paläontologische Zeitschrift, 74, 247–257.CrossRefGoogle Scholar
Kuhn-Schnyder, E. and Rieber, H. (1986). Handbook of Paleozoology. Baltimore: Johns Hopkins University Press.Google Scholar
McCartney, K. and Loper, D. E. (1989). Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus. Paleobiology, 15, 283–298.CrossRefGoogle Scholar
McCartney, K. and Loper, D. E. (1992). Optimal models of skeletal morphology for the silicoflagellate genus Corbisema. Micropaleontology, 38, 87–93.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1980a). Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology, 6, 57–76.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1980b). Shell geometry and stability strategies in the biconvex Brachiopoda. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1980(3), 155–184.Google Scholar
McGhee, G. R. Jr. (1988). The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology, 14, 250–257.CrossRefGoogle Scholar
McGhee, G. R. Jr. (1991). Theoretical morphology: the concept and its applications. In Analytical Paleobiology, eds. Gilinsky, N. L. and Signor, P. W., pp. 87–102. Short Courses in Paleontology No. 4, the Paleontological Society and the Univeristy of Tennessee, Knoxville.Google Scholar
McGhee, G. R. Jr. (1995). Geometry of evolution in the biconvex Brachiopoda: morphological effects of mass extinction. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 197, 357–382.Google Scholar
McGhee, G. R. Jr. (1999). Theoretical Morphology: the Concept and Its Applications. New York: Columbia University Press.Google Scholar
McGhee, G. R. Jr. (2001a). Exploring the spectrum of existent, nonexistent and impossible biological form. Trends in Ecology and Evolution, 16, 172–173.CrossRefGoogle Scholar
McGhee, G. R. Jr. (2001b). The question of spiral axes and brachiopod shell growth: a comparison of morphometric techniques. Paleobiology, 27, 716–723.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. (2006). Exploring the spectrum of existent, nonexistent, and impossible biological form: a research program. In Modeling Biology: Structures, Behaviors, Evolution, eds. Laubichler, M. and G. B. Müller, pp. in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
McGhee, G. R. Jr. and McKinney, F. K. (2000). A theoretical morphologic analysis of convergently evolved erect helical colony form in the Bryozoa. Paleobiology, 26, 556–577.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. and McKinney, F. K. (2002). A theoretical morphologic analysis of ecomorphologic variation in Archimedes helical colony form. Palaios, 17, 556–570.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. and Starcher, R. W. (2006). Geometric models of lophophore shape and arrangement in extinct modular organisms. Journal of Paleontology, in press.Google Scholar
McGhee, G. R. Jr., Bayer, U., and Seilacher, A. (1991). Biological and evolutionary responses to transgressive-regressive cycles. In Cycles and Events in Stratigraphy, eds. Einsele, G., Ricken, W., and A. Seilacher, pp. 696–708. Berlin: Springer Verlag.Google Scholar
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. (2004). Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 289–297.CrossRefGoogle Scholar
McGowan, A. J. (2004). The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology, 30, 369–395.2.0.CO;2>CrossRefGoogle Scholar
McHenry, M. J. and Patek, S. N. (2004). The evolution of larval morphology and swimming performance in ascidians. Evolution, 58, 1209–1224.CrossRefGoogle ScholarPubMed
Mack, R. N. (2003). Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions. International Journal of Plant Science, 164(3 Supplement), S185–S196.CrossRefGoogle Scholar
McKinney, F. K. and McGhee, G. R. Jr. (2003). Evolution of erect helical colony form in the Bryozoa: phylogenetic, functional, and ecological factors. Biological Journal of the Linnean Society, 80, 360–367.CrossRefGoogle Scholar
McKinney, F. K. and McGhee, G. R. Jr. (2004). Erratum: Evolution of erect helical colony form in the Bryozoa. Biological Journal of the Linnean Society, 81, 619–620.CrossRefGoogle Scholar
McKinney, F. K. and Raup, D. M. (1982). A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula. Paleobiology, 8, 101–112.CrossRefGoogle Scholar
McKitrick, M. C. (1993). Phylogenetic constraint in evolutionary theory: has it any explanatory power?Annual Review of Ecology and Systematics, 24, 307–330.CrossRefGoogle Scholar
Maclaurin, J. (2003). The good, the bad and the impossible. Biology and Philosophy, 18, 463–476.CrossRefGoogle Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
Merks, R. M. H., Hoekstra, A. G., Kaandorp, J. A., Sloot, P. M. A., and Hogeweg, P. (2006). Problem-solving environments for biological morphogenesis. Computing in Science and Engineering, 8(1), 61–72.CrossRefGoogle Scholar
Meyer, A. (2003). There and back again. Nature, 424, 255.CrossRefGoogle Scholar
Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Müller, G. B. and Newman, S. A. (2003). Origination of Organismal Form: Beyond the Gene in Deveopmental and Evolutionary Biology. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Müller, G. B. and Newman, S. A. (2005). The innovation triad: an evodevo agenda. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 487–503.CrossRefGoogle Scholar
Müller, G. B. and Wagner, G. P. (1991). Novelty in evolution: restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.CrossRefGoogle Scholar
Newman, M. E. J. and Palmer, R. G. (2003). Modeling Extinction. Oxford: Oxford University Press.Google Scholar
Niklas, K. J. (1986). Computer-simulated plant evolution. Scientific American, 254 (March), 78–86.CrossRefGoogle Scholar
Niklas, K. J. (1997a). Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology, 23, 63–76.CrossRefGoogle Scholar
Niklas, K. J. (1997b). The Evolutionary Biology of Plants. Chicago: University of Chicago Press.Google Scholar
Niklas, K. J. (2004). Computer models of early land plant evolution. Annual Review of Earth and Planetary Sciences, 32, 47–66.CrossRefGoogle Scholar
Niklas, K. J. (2006). Optimization and early land plant evolution. In Modeling Biology: Structures, Behavior, Evolution, eds. Laubichler, M. and Müller, G. B., in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Niklas, K. J. and Kerchner, V. (1984). Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology, 10, 79–101.CrossRefGoogle Scholar
Okamoto, T. (1988). Analysis of heteromorph ammonoids by differential geometry. Palaeontology, 31, 35–52.Google Scholar
Olsen, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago: University of Chicago Press.Google Scholar
Oster, G. F., Shubin, N., Murray, J. D., and Alberch, P. (1988). Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution, 42, 862–884.CrossRefGoogle ScholarPubMed
Popov, I. Y. (2002). “Periodical systems” in biology (a historical issue). Verhandlungen zur Geschichte und Theorie der Biologie, 9, 55–68.Google Scholar
Rasskin-Gutman, D. (2003). Boundary constraints for the emergence of form. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 305–322. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Rasskin-Gutman, D. (2005). Modularity: jumping forms within morphospace. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 207–219. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Rasskin-Gutman, D. and Buscalioni, A. D. (2001). Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology, 27, 59–78.2.0.CO;2>CrossRefGoogle Scholar
Rasskin-Gutman, D. and Izpisúa-Belmonte, J. C. (2004). Theoretical morphology of developmental asymmetries. BioEssays, 26, 405–412.CrossRefGoogle ScholarPubMed
Raup, D. M. (1961). The geometry of coiling in gastropods. Proceedings of the National Academy of Sciences (USA), 47, 602–609.CrossRefGoogle ScholarPubMed
Raup, D. M. (1966). Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40, 1178–1190.Google Scholar
Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41, 43–65.Google Scholar
Raup, D. M. and Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147, 1294–1295.CrossRefGoogle ScholarPubMed
Raup, D. M., McGhee, G. R. Jr., and McKinney, F. K. (2006). Source code for theoretical morphologic simulation of helical colony form in the Bryozoa. Palaeontologia Electronica, 9(2); http://palaeo-electronica.org/paleo/2006_2/helical/index.html.Google Scholar
Reif, W.-E. (1980). A model of morphogenetic processes in the dermal skeleton of elasmobranchs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 159, 339–359.Google Scholar
Rex, M. A. and Boss, K. J. (1976). Open coiling in recent gastropods. Malacologia, 15, 289–297.Google Scholar
Rice, S. H. (1997). The analysis of ontogenetic trajectories: when a change in size or shape is not heterochrony. Proceedings of the National Academy of Sciences USA, 94, 907–912.CrossRefGoogle Scholar
Richtsmeier, J. T. and Lele, S. (1993). A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biological Reviews, 68, 381–411.CrossRefGoogle ScholarPubMed
Ridley, M. (1996). Evolution. Cambridge (MA): Blackwell Science.Google Scholar
Russell, E. S. (1916). Form and Function: a Contribution to the History of Animal Morphology. Chicago: University of Chicago Press (1982 Reprint).Google Scholar
Saunders, W. B. and Swan, A. R. H. (1984). Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology, 10, 195–228.CrossRefGoogle Scholar
Saunders, W. B., Work, D. M., and Nikolaeva, S. V. (2004). The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology, 30, 19–43.2.0.CO;2>CrossRefGoogle Scholar
Savazzi, E. (1985). SHELLGEN: A BASIC program for the modeling of molluscan shell ontogeny and morphogenesis. Computers and Geosciences, 11, 521–530.CrossRefGoogle Scholar
Savazzi, E. (1987). Geometric and functional constraints on bivalve shell morphology. Lethaia, 20, 293–306.CrossRefGoogle Scholar
Savazzi, E. (1990). C programs for displaying shaded three-dimensional objects on a PC. Computers and Geosciences, 16, 195–209.CrossRefGoogle Scholar
Savazzi, E. (1993). C++ classes for theoretical shell morphology. Computers and Geosciences, 19, 931–964.CrossRefGoogle Scholar
Schindel, D. E. (1990). Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation? In Causes of Evolution, eds. Ross, R. A. and Allmon, W. D., pp. 270–304. Chicago: University of Chicago Press.Google Scholar
Schwenk, K. (1995). A utilitarian approach to constraint. Zoology, 98, 251–262.Google Scholar
Signes, M., Bijma, J., Hemleben, C., and Ott, R. (1993). A model for planktic foraminiferal shell growth. Paleobiology, 19, 71–91.CrossRefGoogle Scholar
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution. New York: Columbia University Press.Google Scholar
Snoad, N. and Nilsson, M. (2003). Quasispecies evolution on dynamic fitness landscapes. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 273–289. Oxford: Oxford University Press.Google Scholar
Solé, R. (2002). Modelling macroevolutionary patterns: an ecological perspective. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 312–337. Berlin: Springer Verlag.CrossRefGoogle Scholar
Solé, R. and Goodwin, B. (2000). Signs of Life: How Complexity Pervades Biology. New York: Basic Books.Google Scholar
Stadler, P. F. (2002). Fitness landscapes. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 183–204. Berlin: Springer Verlag.CrossRefGoogle Scholar
Stadler, B. M. R. and Stadler, P. F. (2004). The topology of evolutionary biology. In Modeling in Molecular Biology, eds. Ciobanu, G. and Rozenberg, G., pp. 267–286. Berlin: Springer Verlag.CrossRefGoogle Scholar
Stadler, B. M. R., Stadler, P. F., Wagner, G. P., and Fontana, W. (2001). The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213, 241–274.CrossRefGoogle ScholarPubMed
Starcher, R. W. and McGhee, G. R. Jr. (2000). Fenestrate theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct Bryozoa. Paleobiology, 26, 116–136.2.0.CO;2>CrossRefGoogle Scholar
Starcher, R. W. and McGhee, G. R. Jr. (2002). Theoretical morphology of modular organisms: geometric constraints of branch and dissepiment width and spacing in fenestrate bryozoans. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 223, 79–122.Google Scholar
Starcher, R. W. and McGhee, G. R. Jr. (2003). Fenestrate graptolite theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct hemichordates. Journal of Paleontology, 77, 360–367.CrossRefGoogle Scholar
Stone, J. R. (1996). Computer simulated shell shape and size variation in the Caribbean land snail genus Cerion: a test of geometrical constraints. Evolution, 50, 341–347.Google ScholarPubMed
Stone, J. R. (1998). Ontogenic tracks and evolutionary vestiges in morphospace. Biological Journal of the Linnean Society, 64, 223–238.CrossRefGoogle Scholar
Stone, J. R. (1999). Using a mathematical model to test the null hypothesis of optimal shell construction by four marine gastropods. Marine Biology, 134, 397–403.CrossRefGoogle Scholar
Stone, J. R. (2002). Delayed prezygotic isolating mechanisms: evolution with a twist. Proceedings of the Royal Society of London, 269, 861–865.CrossRefGoogle ScholarPubMed
Stone, J. R. (2004). Nonoptimal shell forms as overlapping points in functional and theoretical morphospaces. American Malacological Bulletin, 18, 129–134.Google Scholar
Strathmann, R. R. (1978). Progressive vacating of adaptive types during the Phanerozoic. Evolution, 32, 907–914.CrossRefGoogle ScholarPubMed
Streidter, G. F. (2003). Epigenesis and evolution of brains: from embryonic divisions to functional systems. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 287–303. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Swan, A. R. H. (1990). A computer simulation of evolution by natural selection. Journal of the Geological Society of London, 147, 223–228.CrossRefGoogle Scholar
Swan, A. R. H. (1999). Computer models of fossil morphology. In Numerical Palaeobiology, ed. Harper, D. A. T., pp. 157–179. London: John Wiley and Sons Ltd.Google Scholar
Swan, A. R. H. and Kershaw, S. (1994). A computer model for skeletal growth of stromatoporoids. Palaeontology, 37, 409–423.Google Scholar
Thom, R. (1975). Structural Stability and Morphogenesis: an Outline of a General Theory of Models. Reading, MA: W. A. Benjamin, Inc.Google Scholar
Thomas, R. D. K. (2005). Hierarchial integration of modular structures in the evolution of animal skeletons. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 239–258. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.Google Scholar
Thomas, R. D. K. and Reif, W.-E. (1993). The skeleton space: a finite set of organic designs. Evolution, 47, 341–360.CrossRefGoogle ScholarPubMed
Thomas, R. D. K., Shearman, R. M., and Stewart, G. W. (2000). Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288, 1239–1242.CrossRefGoogle ScholarPubMed
Thompson, D'A. W. (1917). On Growth and Form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thompson, D'A. W. (1942). On Growth and Form. Cambridge: Cambridge University Press.Google Scholar
Tyszka, J. (2006). Morphospace of foraminiferal shells: results from the moving reference model. Lethaia, 39, 1–12.Google Scholar
Tyszka, J. and Topa, P. (2005). A new approach to modeling of foraminiferal shells. Paleobiology, 31, 522–537.CrossRefGoogle Scholar
Ubukata, T. (2000). Theoretical morphology of hinge and shell form in Bivalvia: geometric constraints derived from space conflict between umbones. Paleobiology, 26, 606–624.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2001). Stacking increments: a new model and morphospace for the analysis of bivalve shell growth. Historical Biology, 15, 303–321.CrossRefGoogle Scholar
Ubukata, T. (2003a). A theoretical morphologic analysis of bivalve ligaments. Paleobiology, 29, 369–380.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2003b). Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology, 29, 480–491.2.0.CO;2>CrossRefGoogle Scholar
Ubukata, T. (2005). Theoretical morphology of bivalve shell sculptures. Paleobiology, 31, 643–655.CrossRefGoogle Scholar
Valen, L. (1973). A new evolutionary theory. Evolutionary Theory, 1, 1–30.Google Scholar
Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–428.CrossRefGoogle Scholar
Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–173.CrossRefGoogle Scholar
Waddington, C. H. (1957). The Strategy of the Genes: a Discussion of some Aspects of Theoretical Biology. London: Allen and Unwin.Google Scholar
Waddington, C. H. (1975). The Evolution of an Evolutionist. Ithaca: Cornell University Press.Google Scholar
Wagner, G. P. (2001). What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology, 291, 305–309.CrossRefGoogle ScholarPubMed
Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle ScholarPubMed
Ward, P. (1980). Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology, 6, 32–43.CrossRefGoogle Scholar
Waters, J. A. (1977). Quantification of shape by use of Fourier analysis: the Mississippian blastoid genus Pentremites. Paleobiology, 3, 288–299.CrossRefGoogle Scholar
Williamson, P. G. (1981). Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, 293, 437–443.CrossRefGoogle Scholar
Wilson, E. O. and Bossert, W. H. (1971). A Primer of Population Biology. Sunderland: Sinauer.Google Scholar
Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media, Inc.Google Scholar
Wray, G. A. (2002). Do convergent developmental mechanisms underlie convergent phenotypes?Brain, Behavior and Evolution, 59, 327–336.CrossRefGoogle ScholarPubMed
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics, 1, 356–366.Google Scholar
Zwieniecki, M. A., Boyce, C. K., and Holbrook, N. M. (2004). Functional design space of single-veined leaves: role of tissue hydraulic properties in constraining leaf size and shape. Annals of Botany, 94, 507–513.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • George R. McGhee, Rutgers University, New Jersey
  • Book: The Geometry of Evolution
  • Online publication: 14 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618369.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • George R. McGhee, Rutgers University, New Jersey
  • Book: The Geometry of Evolution
  • Online publication: 14 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618369.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • George R. McGhee, Rutgers University, New Jersey
  • Book: The Geometry of Evolution
  • Online publication: 14 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618369.011
Available formats
×