Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T23:07:04.811Z Has data issue: false hasContentIssue false

8 - Technicolor: a first attempt to explain hierarchies

from Part 1 - Effective field theory: the Standard Model, supersymmetry, unification

Published online by Cambridge University Press:  17 May 2010

Michael Dine
Affiliation:
University of California, Santa Cruz
Get access

Summary

In Chapter 5, we learned a great deal about the dynamics of quantum chromodynamics. In Section 4.5, we argued that the hierarchy problem is one of the puzzles of the Standard Model. The grand unified models of the previous chapter provided a quite stark realization of the hierarchy problem. In an SU(5) grand unified model, we saw that it is necessary to carefully adjust the couplings in the Higgs potential in order that one obtain light doublets and heavy color triplet Higgs. This is already true at tree level; loop effects will correct these relations, requiring further delicate adjustments.

The first proposal to resolve this problem goes by the name “technicolor” and is the subject of this chapter. The technicolor hypothesis exploits our understanding of QCD dynamics. It elegantly explains the breaking of the electroweak symmetry. It has more difficulty accounting for the masses of the quarks and leptons, and simple versions seem incompatible with precision studies of the W and Z particles. In this chapter, we will introduce the basic features of the technicolor hypothesis. We will not attempt to review the many models that have been developed to try to address the difficulties of flavor and precision electroweak experiments. It is probably safe to say that, as of this writing, none is totally successful, nor are they terribly plausible. But it should be kept in mind that this may reflect the limitations of theorists; experiment may yet reveal that nature has chosen this path. In the second part of this book, we will argue that in string theory, ignoring phenomenological details, a technicolored solution to the hierarchy problem seems as likely as its main competitor, supersymmetry.

Type
Chapter
Information
Supersymmetry and String Theory
Beyond the Standard Model
, pp. 131 - 136
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×