Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T20:10:00.206Z Has data issue: false hasContentIssue false

2 - Managing and monitoring genetic erosion

Published online by Cambridge University Press:  29 January 2010

Andrew G. Young
Affiliation:
Division of Plant Industry CSIRO, Canberra
Geoffrey M. Clarke
Affiliation:
Division of Entomology, CSIRO, Canberra
Get access

Summary

ABSTRACT

Fragmentation, decline or perturbation of a species can lead to genetic changes. Often these changes can have adverse implications for the conservation of the species, but there is a diversity of responses by different species. Therefore, managers must use a variety of methods to detect, avert or remedy genetic changes which actually affect population viability. The objective should be to maintain optimal fitness in changing conditions, rather than to maintain specific arrays of phenotypes. This effort should be accompanied by monitoring of genetic contributions to fitness, to confirm the effectiveness of the conservation genetic strategy. This approach presumes we have the ability to directly or indirectly manipulate and measure adaptive genetic variants, such as many multilocus (quantitative) traits, or a representative array of single-locus traits associated with fitness. Such analyses are challenging, but are becoming more accessible. It is also important to examine the association between adaptive diversity and surrogates which may be more amenable to monitoring or manipulation, such as neutral DNA variants, size or number of populations, or the range of ecological conditions in which populations of the species are found. In evaluating different types of genetic variation and their surrogates, two important points are the replaceability of the variation (that is, how long it would take for the variation to be replaced) and its utility (likely contribution to adaptation).

INTRODUCTION

Biodiversity conservation targets three interdependent levels: ecosystems, species and genes. This chapter will highlight genetic variation within species, an area which is currently experiencing a wealth of new field, laboratory and statistical methods.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×