Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T12:40:34.926Z Has data issue: false hasContentIssue false

8 - Graph-Theoretic Approaches to Modularity Analysis

Published online by Cambridge University Press:  28 January 2010

Aidong Zhang
Affiliation:
State University of New York, Buffalo
Get access

Summary

INTRODUCTION

Modules (or clusters) in protein-protein interaction (PPI) networks can be identified by applying various clustering algorithms that use graph theory. Each of these methods converts the process of clustering a PPI dataset into a graph-theoretic analysis of the corresponding PPI network. Such clustering approaches take into consideration either the local topology or the global structure of the networks.

The graph-theoretic approaches to modularity analysis can be divided into two classes. One type of approaches [24, 238, 272, 286] seeks to identify dense subgraphs by maximizing the density of each subgraph on the basis of local network topology. The goal of the second group of methods [94,99,138,180,250] is to find the best partition in a graph. Based on the global structure of a network, the methods in this class minimize the cost of partitioning or separating the graph. The approaches in these classes will be discussed in the first two sections of this chapter.

PPI networks are typically large, often having more than 6,000 nodes. In a graph of such large size, classical graph-theoretic algorithms become inefficient. A graph reduction-based approach [65], which enhances the efficiency of module detection in such large and complex interaction networks, will be explored in the third section of this chapter.

FINDING DENSE SUBGRAPHS

In this section, we will discuss those graph-theoretic approaches that seek to identify the densest subgraphs within a graph; specific methods vary in the means used to assess the density of the subgraphs. Six variations on this theme will be discussed in the following subsections.

Type
Chapter
Information
Protein Interaction Networks
Computational Analysis
, pp. 130 - 151
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×