Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T21:22:14.142Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 February 2010

Gary Mavko
Affiliation:
Stanford University, California
Tapan Mukerji
Affiliation:
Stanford University, California
Jack Dvorkin
Affiliation:
Stanford University, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Rock Physics Handbook
Tools for Seismic Analysis of Porous Media
, pp. 479 - 502
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, J. D., 1984. Wave Propagation in Elastic Solids. Amsterdam: Elsevier Science Publication.Google Scholar
Aki, K. and Richards, P. G., 1980. Quantitative Seismology: Theory and Methods. San Francisco, CA: W. H. Freeman and Co.Google Scholar
Aleksandrov, K. S. and Ryzhova, T. V., 1961a. Elastic properties of rock-forming minerals II. Layered silicates. Bull. Acad. Sci. USSR, Geophys. Ser. English translation no. 12, 1165–1168.Google Scholar
Alexandrov, K. S. and Ryzhova, T. V., 1961b. The elastic properties of crystals. Sov. Phys. Crystallogr., 6, 228–252.Google Scholar
Alexandrov, K. S., Ryzhova, T. V., and Belikov, B. P., 1964. The elastic properties of pyroxenes. Sov. Phys. Crystallog., 8, 589–591.Google Scholar
Alkalifah, T. and Tsvankin, I., 1995. Velocity analysis for transversely isotropic media. Geophys., 60, 1550–1566.CrossRefGoogle Scholar
Anderson, O. L. and Liebermann, R. C., 1966. Sound velocities in rocks and minerals. VESIAC State-of-the-Art Report No. 7885–4-x, University of Michigan.Google Scholar
Angel, Y. C. and Achenbach, J. D., 1985. Reflection and transmission of elastic waves by aperiodic array of cracks. J. Appl. Mech., 52, 33–41.CrossRefGoogle Scholar
Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Mech. Eng., 146, 54–62.Google Scholar
Auld, B. A., 1990. Acoustic Fields and Waves in Solids, vols. 1, 2. Malabar, FL: Robert E. Krieger Publication Co.Google Scholar
Backus, G. E., 1962. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–4440.CrossRefGoogle Scholar
Bakulin, A., 2003. Intrinsic and layer-induced vertical transverse isotropy. Geophys., 68, 1708–1713.CrossRefGoogle Scholar
Bakulin, A. and Grechka, V., 2003. Effective anisotropy of layered media. Geophys., 68, 1817–1821.CrossRefGoogle Scholar
Bakulin, A., Grechka, V., and Tsvankin, I., 2000. Estimation of fracture parameters from reflection seismic data – Part I: HTI model due to a single fracture set. Geophys., 65, 1788–1802.CrossRefGoogle Scholar
Bakulin, V. and Bakulin, A., 1999. Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants. In 69th Annual International Meeting, SEG, Expanded Abstracts, pp. 1971–1974.
Banik, N. C., 1987. An effective anisotropy parameter in transversely isotropic media. Geophys., 52, 1654.CrossRefGoogle Scholar
Banik, N. C., Lerche, I., and Shuey, R. T., 1985. Stratigraphic filtering, Part I: Derivation of the O'Doherty–Anstey formula. Geophys., 50, 2768–2774.CrossRefGoogle Scholar
Bardis, S. C., Lumsden, A. C., and Barton, N. L., 1983. Fundamentals of rock joint deformation. Int. J. Rock Mech., 20, 249–268.Google Scholar
Bass, J. D., 1984. Elasticity of single-crystal orthoferrosilite. J. Geophys. Res., 89, 4359–4371.CrossRefGoogle Scholar
Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophys., 57, 1396–1408.CrossRefGoogle Scholar
Bear, J., 1972. Dynamics of Fluids in Porous Media. Mineola, NY: Dover Publications, Inc.Google Scholar
Belikov, B. P., Alexandrov, T. W., and Rysova, T. W., 1970. Elastic Properties of Rock Minerals and Rocks. Moscow: Nauka.Google Scholar
Beltzer, A. I., 1988. Acoustics of Solids. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Ben-Menahem, A. and Singh, S., 1981. Seismic Waves and Sources. New York: Springer-Verlag.CrossRefGoogle Scholar
Beran, M. J., 1968. Statistical Continuum Theories. New York: Wiley Interscience.Google Scholar
Beran, M. J. and Molyneux, J., 1966. Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Quart. Appl. Math., 24, 107–118.CrossRefGoogle Scholar
Berge, P. A., Fryer, G. J., and Wilkens, R. H., 1992. Velocity–porosity relationships in the upper oceanic crust: theoretical considerations. J. Geophys. Res., 97, 15 239–15 254.CrossRefGoogle Scholar
Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993. Influence of microstructure on rock elastic properties. Geophys. Res. Lett., 20, 2619–2622.CrossRefGoogle Scholar
Bergmann, L., 1954. Der Ultraschall und seine Anwendung in Wissenschaft und Technik. Zurich: S. Hirzel.Google Scholar
Berlincourt, D., Jaffe, H., and Shiozawa, L. R., 1963. Electroelastic properties of the sulfides, selenides, and tellurides of Zn and Cd. Phys. Rev., 129, 1009–1017.CrossRefGoogle Scholar
Bernal, J. D. and Mason, J., 1960. Coordination of randomly packed spheres. Nature, 188, 910–911.CrossRefGoogle Scholar
Bernstein, B. T., 1963. Elastic constants of synthetic sapphire at 27 degrees Celsius. J. Appl. Phys., 34, 169–172.CrossRefGoogle Scholar
Berryman, J. G., 1980a. Confirmation of Biot's theory. Appl. Phys Lett., 37, 382–384.CrossRefGoogle Scholar
Berryman, J. G., 1980b. Long-wavelength propagation in composite elastic media. J. Acoust. Soc. Am., 68, 1809–1831.CrossRefGoogle Scholar
Berryman, J. G., 1981. Elastic wave propagation in fluid-saturated porous media. J. Acoust. Soc. Am., 69, 416–424.CrossRefGoogle Scholar
Berryman, J. G., 1983. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. J. Acoust. Soc. Am., 74, 1805–1812.CrossRefGoogle Scholar
Berryman, J. G., 1992a. Effective stress for transport properties of inhomogeneous porous rock. J. Geophys. Res., 97, 17 409–17 424.CrossRefGoogle Scholar
Berryman, J. G., 1992b. Single-scattering approximations for coefficients in Biot's equations of poroelasticity. J. Acoust. Soc. Am., 91, 551–571.CrossRefGoogle Scholar
Berryman, J. G., 1993. Effective stress rules for pore-fluid transport in rocks containing two minerals. Int. J. Rock Mech., 30, 1165–1168.CrossRefGoogle Scholar
Berryman, J. G., 1995. Mixture theories for rock properties. In Rock Physics and Phase Relations: a Handbook of Physical Constants, ed. Ahrens, T. J.. Washington, DC: American Geophysical Union, pp. 205–228.CrossRefGoogle Scholar
Berryman, J. G., 2008. Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies. Geophys., 73, D1–D10.CrossRefGoogle Scholar
Berryman, J. G. and Milton, G. W., 1988. Microgeometry of random composites and porous media. J. Physics D, 21, 87–94.CrossRefGoogle Scholar
Berryman, J. G. and Milton, G. W., 1991. Exact results for generalized Gassmann's equation in composite porous media with two constituents. Geophys., 56, 1950–1960.CrossRefGoogle Scholar
Berryman, J. G., Pride, S. R., and Wang, H. F., 1992. A differential scheme for elastic properties of rocks with dry or saturated cracks. In Proc. 15th ASCE Engineering Mechanics Conference.
Berryman, J. G., Grechka, V. Y., and Berge, P., 1999. Analysis of Thomsen parameters for finely layered VTI media. Geophys. Prospect., 47, 959–978.CrossRefGoogle Scholar
Bhalla, A. S., Cook, W. R., Hearmon, R. F. S., et al., 1984. Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals. In Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics, vol. 18 (supplement to vol. III/11), ed. Hellwege, K.-H. and Hellwege, A. M.. Berlin: Springer-Verlag.Google Scholar
Bhimasenacher, J., 1945. Elastic constants of calcite and sodium nitrate. Proc. Ind. Acad. Sci. A, 22, 199–207.Google Scholar
Bilodeaux, B., 1997. Shaley Sand Evaluation, course notes. Stanford University.Google Scholar
Biot, M. A., 1956. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range and II. Higher-frequency range. J. Acoust. Soc. Am., 28, 168–191.CrossRefGoogle Scholar
Biot, M. A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33, 1482–1498.CrossRefGoogle Scholar
Biot, M. A. and Willis, D. G., 1957. The elastic coefficients of the theory of consolidation. J. App. Mech., 24, 594–601.Google Scholar
Birch, F., 1960a. Elastic constants of rutile – a correction to a paper by R. K. Verma, “Elasticity of some high-density crystals.”J. Geophys. Res., 65, 3855–3856.CrossRefGoogle Scholar
Birch, F., 1960b. The velocity of compressional waves in rocks to 10 kilobars. J. Geophys. Res., 65, 1083–1102.CrossRefGoogle Scholar
Birch, F., 1961. The velocity of compressional waves in rocks to 10 kilobars, Part 2. J. Geophys. Res., 66, 2199–2224.CrossRefGoogle Scholar
Birch, F., 1966. Compressibility; elastic constants. In Handbook of Physical Constants, ed. Clark, S. P., Geolog. Soc. Am., Memoir, vol. 97, pp. 97–174.
Bishop, C. M., 2006. Pattern Recognition and Machine Learning. New York: Springer-Verlag.Google Scholar
Blair, D. P., 1990. A direct comparison between vibrational resonance and pulse transmission data for assessment of seismic attenuation in rock. Geophys., 55, 51–60.CrossRefGoogle Scholar
Blakslee, O. L., Proctor, D. G., Seldin, E. J., Sperce, G. B., and Werg, T., 1970. Elastic constants of compression-annealed pyrolitic graphite. J. Appl. Phys., 41, 3373–3382.CrossRefGoogle Scholar
Blangy, J. P., 1992. Integrated Seismic Lithologic Interpretation: the Petrophysical Basis. Ph.D. dissertation, Stanford University.Google Scholar
Boggs, S., 2001. Principles of Sedimentology and Stratigraphy. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Born, M. and Wolf, E., 1980. Principles of Optics, 6th edn. Oxford: Pergamon Press.Google Scholar
Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophys. Prospecting, 9, 485–503.CrossRefGoogle Scholar
Bourbié, T., Coussy, O., and Zinszner, B., 1987. Acoustics of Porous Media. Houston, TX: Gulf Publishing Co.Google Scholar
Bowers, G. L., 1995. Pore pressure estimation from velocity data: accounting for pore pressure mechanisms besides undercompaction. SPE Drilling and Completion (June), 89–95.
Boyse, W. E., 1986. Wave Propagation and Inversion in Slightly Inhomogeneous Media. Ph.D. dissertation, Stanford University.Google Scholar
Bracewell, R., 1965. The Fourier Transform and Its Application. New York: McGraw-Hill Book Co.Google Scholar
Bradford, I. D. R., Fuller, J., Thompson, P. J., and Walsgrove, T. R., 1998. Benefits of assessing the solids production risk in a North Sea reservoir using elastoplastic modeling: SPE/ISRM 47360. Papers presented at the SPE/ISRM Eurock '98, Trondheim, Norway, 8–10 July, pp. 261–269.Google Scholar
Bradley, W. B., 1979. Failure of inclined boreholes. J. Energy Resources Tech., Trans., ASME, 101, 232–239.CrossRefGoogle Scholar
Brandt, H., 1955. A study of the speed of sound in porous granular media. J. Appl. Mech., 22, 479–486.Google Scholar
Bratli, R. K., Horsrud, P., and Risnes, R., 1983. Rock mechanics applied to the region near a wellbore. Proc. 5th Int. Congr. Rock Mechanics, F1–F17. Melbourne: International Society for Rock Mechanics.Google Scholar
Brevik, I., 1995. Chalk data, presented at workshop on effective media, Karlsruhe.
Brie, A., Pampuri, F., Marsala, A. F., and Meazza, O., 1995. Shear sonic interpretation in gas-bearing sands. SPE, 30595, 701–710.Google Scholar
Brisco, B., Pultz, T. J., Brown, R. J., et al., 1992. Soil moisture measurement using portable dielectric probes and time domain reflectometry. Water Resources Res., 28, 1339–1346.CrossRefGoogle Scholar
Bristow, J. R., 1960. Microcracks, and the static and dynamic elastic constants of annealed heavily coldworked metals. Brit. J. Appl. Phys., 11, 81–85.CrossRefGoogle Scholar
Brito Dos Santos, W. L., Ulrych, T. J., and Lima, O. A. L., 1988. A new approach for deriving pseudovelocity logs from resistivity logs. Geophys. Prospecting, 36, 83–91.CrossRefGoogle Scholar
Brocher, T., 2005, Relations between elastic wavespeeds and density in the Earth's crust. Bull. Seismol. Soc. Amer., 95, 6, 2081–2092.CrossRefGoogle Scholar
Brown, G. G., 1966. Unit Operations. New York: J. Wiley.Google Scholar
Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophys., 40, 608–616.CrossRefGoogle Scholar
Brown, S. R. and Scholz, C. H., 1986. Closure of random elastic surfaces: I. Contact. J. Geophys. Res., 90, 5531–5545.CrossRefGoogle Scholar
Bruggeman, D. A. G., 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys., Lpz, 24, 636–679.CrossRefGoogle Scholar
Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223–227.CrossRefGoogle Scholar
Budiansky, B. and O'Connell, R. J., 1976. Elastic moduli of a cracked solid. Int. J. Solids Structures, 12, 81–97.CrossRefGoogle Scholar
Cadoret, T., 1993. Effet de la Saturation Eau/Gaz sur les Propriétés Acoustiques des Roches. Ph.D. dissertation, University of Paris, VII.Google Scholar
Carcione, J. M., Ursin, B., and Nordskag, J. I., 2007. Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics, 72, E193–E204.CrossRefGoogle Scholar
Carman, P. C., 1961. L'écoulement des Gaz á Travers les Milieux Poreux, Bibliothéque des Sciences et Techniques Nucléaires, Presses Universitaires de France, Paris.Google Scholar
Carmichael, R. S., 1989. Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton, FL: CRC Press.Google Scholar
Castagna, J. P., 1993. AVO analysis-tutorial and review. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis. ed. Castagna, J. P. and Backus, M.. Investigations in Geophysics, No. 8, Society of Exploration Geophysicists, Tulsa, Oklahoma, pp. 3–36.CrossRefGoogle Scholar
Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophys., 50, 571–581.CrossRefGoogle Scholar
Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993. Rock physics – The link between rock properties and AVO response. In Offset-Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M.. Investigations in Geophysics, No. 8, Society of Exploration Geophysicists, Tulsa, Oklahoma, pp. 135–171.CrossRefGoogle Scholar
Chang, C., Zoback, M. D., and Khaksar, A., 2004. Rock strength and physical property measurements in sedimentary rocks. SRB Annual Report, vol. 96, paper G4.Google Scholar
Chapman, M., 2003. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys. Prosp., 51, 369–379.CrossRefGoogle Scholar
Chapman, M., Zatsepin, S. V., and Crampin, S., 2002. Derivation of a microstructural poroelasticity model. Geophys. J. Int., 151, 427–451.CrossRefGoogle Scholar
Chapman, M., Liu, E., and Li, X-Y., 2006. The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys. J. Int., 167, 89–105.CrossRefGoogle Scholar
Chelam, E. V., 1961. Thesis, Indian Institute of Science, Bangalore.Google Scholar
Chen, W., 1995. AVO in Azimuthally Anisotropic Media: Fracture Detection Using P-wave Data and a Seismic Study of Naturally Fractured Tight Gas Reservoirs. Ph.D. dissertation, Stanford University.Google Scholar
Cheng, C. H., 1978. Seismic Velocities in Porous Rocks: Direct and Inverse Problems. Sc.D. thesis, MIT, Cambridge, Massachusetts.Google Scholar
Cheng, C. H., 1993. Crack models for a transversely anisotropic medium. J. Geophys. Res., 98, 675–684.CrossRefGoogle Scholar
Choy, M. M., Cook, W. R., Hearmon, R. F. S., et al., 1979. Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals. In Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics, vol. 11 (revised and extended edition of vols. III/1 and III/2), ed. Kellwege, K.-H. and Hellwege, A. M.. Berlin: Springer-Verlag.Google Scholar
Christensen, N. I., 1972. Elastic properties of polycrystalline magnesium, iron, and manganese carbonates to 10 kilobars. J. Geophys. Res., 77, 369–372.CrossRefGoogle Scholar
Christensen, N. I. and Wang, H. F., 1985. The influence of pore pressure and confining pressure on dynamic elastic properties of Berea Sandstone. Geophysics, 50, 207–213.CrossRefGoogle Scholar
Christensen, N. I. and Mooney, W. D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100, 9761–9788.CrossRefGoogle Scholar
Christensen, R. M., 1991. Mechanics of Composite Materials. Malabar, FL: Robert E. Krieger Publication Co.Google Scholar
Christensen, R. M., 2005. Mechanics of Composite Materials. New York: Dover Publications.Google Scholar
Ciz, R. and Shapiro, S., 2007. Generalization of Gassmann equations for porous media saturated with a solid material. Geophysics, 72, A75–A79.CrossRefGoogle Scholar
Ciz, R., Siggins, A. F., Gurevich, B., and Dvorkin, J., 2008. Influence of microheterogeneity on effectives properties of rocks. Geophysics, 73, E7–E14.CrossRefGoogle Scholar
Claerbout, J. F., 1985. Fundamentals of Geophysical Data Processing. Palo Alto, CA: Blackwell Scientific Publications.Google Scholar
Claerbout, J. F., 1992. Earth Sounding Analysis: Processing versus Inversion. Boston, MA: Blackwell Scientific Publications.Google Scholar
Clark, V. A., Tittmann, B. R., and Spencer, T. W., 1980. Effect of volatiles on attenuation (Q–1) and velocity in sedimentary rocks. J. Geophys. Res., 85, 5190.CrossRefGoogle Scholar
Clavier, C., Coates, G., and Dumanoir, J., 1984. Theoretical and experimental bases for the dual-water model for interpretation of shaley sands. Soc. Pet. Eng. J., 24, 153–168.CrossRefGoogle Scholar
Cleary, M. P., Chen, I.-W., and Lee, S.-M., 1980. Self-consistent techniques for heterogeneous media. Am. Soc. Civil Eng. J. Eng. Mech., 106, 861–887.Google Scholar
Cole, K. S. and Cole, R. H., 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9, 341–351.CrossRefGoogle Scholar
Connolly, P., 1998. Calibration and inversion of non-zero offset seismic. Soc. Expl. Geophys., 68th Annual Meeting, Expanded Abstracts. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Connolly, P., 1999. Elastic impedance. The Leading Edge, 18, 438–452.CrossRefGoogle Scholar
Corson, P. B., 1974. Correlation functions for predicting properties of heterogeneous materials. J. Appl. Phys., 45, 3159–3179.CrossRefGoogle Scholar
Cruts, H. M. A., Groenenboom, J., Duijndam, A. J. W., and Fokkema, J. T., 1995. Experimental verification of stress-induced anisotropy. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting, pp. 894–897.
Cumberland, D. J. and Crawford, R. J., 1987. The packing of particles. In Handbook of Powder Technology, vol. 6. New York: Elsevier.Google Scholar
Dagan, G., 1993. Higher-order correction for effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp. Posous Media, 12, 279–290.CrossRefGoogle Scholar
Dandekar, D. P., 1968. Pressure dependence of the elastic constants of calcite. Phys. Rev., 172, 873.CrossRefGoogle Scholar
Darcy, H., 1856. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont.Google Scholar
Debye, P., 1945. Polar Molecules. Mineola, NY: Dover.Google Scholar
Cruz, V. and Spanos, T. J. T., 1985. Seismic wave propagation in a porous medium. Geophysics, 50, 1556–1565.CrossRefGoogle Scholar
Delameter, W. R., Hermann, G., Barnett, D. M., 1974. Weakening of an elastic solid by a rectangular array of cracks. J. Appl. Mech., 42, 74–80.CrossRefGoogle Scholar
Dellinger, J. and Vernik, L., 1992. Do core sample measurements record group or phase velocity? Soc. Expl. Geophys. 62nd Annual International Meeting, Expanded Abstracts, pp. 662–665.
Dellinger, J., Vasicek, D., and Sondergeld, C., 1998. Kelvin notation for stabilizing elastic-constant inversion. Rev. IFP, 53, 709–719.CrossRefGoogle Scholar
Denton, W. H., 1957. The packing and flow of spheres. AERE Report E/R 1095.
Desbrandes, R., 1985. Encyclopedia of Well Logging. Houston, TX: Gulf Publishing Company.Google Scholar
Digby, P. J., 1981. The effective elastic moduli of porous granular rocks. J. Appl. Mech., 48, 803–808.CrossRefGoogle Scholar
Dix, C. H., 1955. Seismic velocities from surface measurements. Geophys., 20, 68–86.CrossRefGoogle Scholar
Domenico, S. N., 1976. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophys., 41, 882–894.CrossRefGoogle Scholar
Doraiswami, M. S., 1947. Elastic constants of magnetite, pyrite, and chromite. Proc. Ind. Acad. Sci., A, 25, 414–416.Google Scholar
Duda, R. O., Hart, P. E., and Stork, D. G., 2000. Pattern Classification. New York: John Wiley & Sons.Google Scholar
Duffaut, K., Alsos, T., Landrø, M., Rognø, H., and Al-Najjar, N. F., 2000. Shear-wave elastic impedance. Leading Edge, 19, 1222–1229.CrossRefGoogle Scholar
Dullien, F. A. L., 1991. One and two phase flow in porous media and pore structure. In Physics of Granular Media, ed. Bideau, D. and Dodds, J.. New York: Science Publishers Inc., pp. 173–214.Google Scholar
Dullien, F. A. L., 1992. Porous Media: Fluid Transport and Pore Structure. San Diego, CA: Academic Press.Google Scholar
Dutta, N. C. and Odé, H., 1979. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model) – Part 1: Biot theory, Part II: Results. Geophys., 44, 1777–1805.CrossRefGoogle Scholar
Dutta, N. C. and Seriff, A. J., 1979. On White's model of attenuation in rocks with partial gas saturation. Geophysics, 44, 1806–1812.CrossRefGoogle Scholar
Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophys., 58, 524–533.CrossRefGoogle Scholar
Dvorkin, J. and Nur, A., 1996. Elasticity of high-porosity sandstones: theory for two North Sea datasets. Geophys., 61, 1363–1370.CrossRefGoogle Scholar
Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994. The squirt-flow mechanism: macroscopic description. Geophys., 59, 428–438.CrossRefGoogle Scholar
Dvorkin, J., Mavko, G., and Nur, A., 1995. Squirt flow in fully saturated rocks. Geophys. 60, 97–107.CrossRefGoogle Scholar
Dvorkin, J. P. and Mavko, G., 2006. Modeling attenuation in reservoir and nonreservoir rock. Leading Edge, 25, 194–197.CrossRefGoogle Scholar
Eastwood, R. L. and Castagna, J. P., 1986. Interpretation of VP/VS ratios from sonic logs. In Shear Wave Exploration, Geophysical Developments, no. 1, ed. Danbom, S. H. and Domenico, S. N.. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Eaton, B. A., 1975. The equation for geopressure prediction from well logs. Paper SPE 5544. Houston, TX: Society of Petroleum Engineers.Google Scholar
Eberhart-Phillips, D. M., 1989. Investigation of Crustal Structure and Active Tectonic Processes in the Coast Ranges, Central California. Ph.D. dissertation, Stanford University.Google Scholar
Efron, B. and Tibshirani, R. J., 1993. An Introduction to the Bootstrap. New York: Chapman and Hall.CrossRefGoogle Scholar
Eimer, C., 1967. Stresses in multi-phase media. Arch. Mech. Stos., 19, 521.Google Scholar
Eimer, C., 1968. The boundary effect in elastic multiphase bodies. Arch. Mech. Stos., 20, 87.Google Scholar
Einspruch, N. G. and Manning, R. J., 1963. Elastic constants of compound semi-conductors ZnS, PbTe, GaSb. J. Acoust. Soc. Am., 35, 215–216.CrossRefGoogle Scholar
Eissa, E. A. and Kazi, A., 1988. Relation between static and dynamic Young's moduli of rocks. Int. J. Rock Mech., 25, 479–482.CrossRefGoogle Scholar
Ellis, D., Howard, J., Flaum, C., et al., 1988. Mineral logging parameters: Nuclear and acoustic. Tech. Rev., 36(1), 38–55.Google Scholar
Elmore, W. C. and Heald, M. A., 1985. Physics of Waves. Mineola, NY: Dover Publications, Inc.Google Scholar
Elrod, H. G., 1979. A general theory for laminar lubrication with Reynolds roughness. J. Lubr. Tech., 101, 8–14.CrossRefGoogle Scholar
Endres, A. L. and Knight, R., 1992. A theoretical treatment of the effect of microscopic fluid distribution on the dielectric properties of partially saturated rocks. Geophys. Prospecting, 40, 307–324.CrossRefGoogle Scholar
Epstein, P. S., 1941. On the absorption of sound waves in suspensions and emulsions. In Theodore Von Karmen Anniversary Volume, pp. 162–188.
Epstein, P. S. and Carhart, R. R., 1953. The absorption of sound in suspensions and emulsions: I. Water fog in air. J. Acoust. Soc. Am., 25, 553–565.CrossRefGoogle Scholar
Eshelby, J. D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London A, 241, 376–396.CrossRefGoogle Scholar
Fabricius, I. L., 2003. How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bull., 87, 1755–1778.CrossRefGoogle Scholar
Faust, L. Y., 1953. A velocity function including lithologic variation. Geophys., 18, 271–288.CrossRefGoogle Scholar
Finney, J. L., 1970. Random packings and the structure of simple liquids – I. The geometry of random close packing. Proc. Roy. Soc. London A, 319, 479–493.CrossRefGoogle Scholar
Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., and Risnes, R., 2008. Petroleum Related Rock Mechanics. Amsterdam: Elsevier.Google Scholar
Florez, J.-M., 2005. Integrating Geology, Rock Physics, and Seismology for Reservoir Quality Prediction. Ph.D. dissertation, Stanford University.Google Scholar
Focke, J. W. and Munn, D., 1987. Cementation exponents (m) in Middle Eastern carbonate reservoirs. Soc. Pet. Eng., Form. Eval., 2, 155–167.CrossRefGoogle Scholar
Folk, R. L. and Ward, W., 1957. Brazos river bar: a study in the significance of grain-size parameters. J. Sedim. Petrol., 27, 3–26.CrossRefGoogle Scholar
,Formation Evaluation Data Handbook, 1982. Fort Worth, TX: Gearhart Industries, Inc.
Frazer, L. N., 1994. A pulse in a binary sediment. Geophys. J. Int., 118, 75–93.CrossRefGoogle Scholar
Freyburg, , E., 1972. Der Untere und mittlere Buntsandstein SW-Thuringen in seinen gesteinstechnicschen Eigenschaften. Ber. Dte. Ges. Geol. Wiss. A, 176, 911–919.Google Scholar
Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition. Boston, MA: Academic Press.Google Scholar
Gammon, P. H., Kiefte, H., and Clouter, M. J., 1980. Elastic constants of ice by Brillouin spectroscopy. J. Glaciol., 25, 159–167.CrossRefGoogle Scholar
Gangi, A. F. and Carlson, R. L., 1996. An asperity-deformation model for effective pressure. Tectonophysics, 256, 241–251.CrossRefGoogle Scholar
Garcia, X. and Medina, E. A., 2006. Hysteresis effects studied by numerical simulations: cyclic loading-unloading of a realistic sand model. Geophysics, 71, F13–F20.CrossRefGoogle Scholar
Gardner, G. H. F., 1962. Extensional waves in fluid-saturated porous cylinders. J. Acoust. Soc. Am., 34, 36–40.CrossRefGoogle Scholar
Gardner, G. H. F., Gardner, L. W., and Gregory, A. R., 1974. Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophys., 39, 770–780.CrossRefGoogle Scholar
Gassmann, F., 1951. Über die Elastizität poröser Medien. Vier. der Natur. Gesellschaft Zürich, 96, 1–23.Google Scholar
Geertsma, J., 1961. Velocity-log interpretation: the effect of rock bulk compressibility. Soc. Pet. Eng. J., 1, 235–248.CrossRefGoogle Scholar
Geertsma, J. and Smit, D. C., 1961. Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophys., 26, 169–181.CrossRefGoogle Scholar
Gelinsky, S. and Shapiro, S., 1997a. Poroelastic Backus averaging for anisotropic layered fluid- and gas-saturated sediments. Geophys., 62, 1867–1878.CrossRefGoogle Scholar
Gelinsky, S. and Shapiro, S., 1997b. Dynamic equivalent medium model for thickly layered saturated sediments. Geophys. J. Int., 128, F1–F4.CrossRefGoogle Scholar
Gelinsky, S., Shapiro, S., Muller, T., and Gurevich, B., 1998. Dynamic poroelasticity of thinly layered structures. Int. J. Solids Struct., 35, 4739–4751.CrossRefGoogle Scholar
Gibiansky, L. V. and Torquato, S., 1996. Bounds on the effective moduli of cracked materials. J. Mech. Phys. Solids, 44, 233–242.CrossRefGoogle Scholar
Gibson, R. L. and Toksöz, M. N., 1990. Permeability estimation from velocity anisotropy in fractured rock. J. Geophys. Res., 95, 15 643–15 656.CrossRefGoogle Scholar
Glover, P. W. J., Hole, M. J., and Pous, J., 2000. A modified Archie's law for two conducting phases. Earth Planet. Sci. Lett., 180, 369–383.CrossRefGoogle Scholar
Goddard, J. D., 1990. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. A, 430, 105–131.CrossRefGoogle Scholar
Godfrey, J. J., Beaudoin, B. C., and Klemperer, S. L., 1997. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: implications for crustal growth at the North American continental margin. Geol. Soc. Amer. Bull., 109, 1536–1562.2.3.CO;2>CrossRefGoogle Scholar
Gold, N., Shapiro, S., Bojinski, S., and Muller, T. M., 2000. An approach to upscaling for seismic waves in statistically isotropic heterogeneous elastic media. Geophys., 65, 1837–1850.CrossRefGoogle Scholar
Golubev, A. A. and Rabinovich, G. Y., 1976. Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Priklad. GeofizikaMoskva, 73, 109–116.Google Scholar
González, E. F. 2006. Physical and Quantitative Interpretation of Seismic Attributes for Rocks and Fluids Identification. Ph.D. dissertation, Stanford University.Google Scholar
Goodman, R. E. 1976. Methods of Geological Engineering in Discontinuous Rocks. New York: West Publishing.Google Scholar
Gorjainov, N. N. and Ljachowickij, F. M., 1979. Seismic Methods in Engineering Geology. Moscow: Nedra.Google Scholar
Graham, E. K. and Barsch, G. R., 1969. Elastic constants of single-crystal forsterite as a function of temperature and pressure. J. Geophys. Res., 74, 5949–5960.CrossRefGoogle Scholar
Gray, D., Goodway, B., and Chen, T., 1999. Bridging the gap: AVO to detect changes in fundamental elastic constants. In Expanded Abstract, SEG International Meeting. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Grechka, V. and Tsvankin, I., 1998. 3-D description of normal moveout in anisotropic inhomogeneous media. Geophys., 63, 1079–1092.CrossRefGoogle Scholar
Greenberg, M. L. and Castagna, J. P., 1992. Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophys. Prospect., 40, 195–209.CrossRefGoogle Scholar
Greenhalgh, S. A. and Emerson, D. W., 1986. Elastic properties of coal measure rock from the Sydney Basin, New South Wales. Expl. Geophys., 17, 157–163.CrossRefGoogle Scholar
Greenwood, J. A. and Williamson, J., 1966. Contact of nominally flat surfaces. Proc. R. Soc., London A, 295, 300–319.CrossRefGoogle Scholar
Gubernatis, J. E. and Krumhansl, J. A., 1975. Macroscopic engineering properties of polycrystalline materials: elastic properties. J. Appl. Phys., 46, 1875.CrossRefGoogle Scholar
Guéguen, Y. and Palciauskas, V., 1994. Introduction to the Physics of Rocks. Princeton, NJ: Princeton University Press.Google Scholar
Gurevich, B., 2004. A simple derivation of the effective stress coefficient for seismic velocities in porous rocks. Geophys., 69, 393–397.CrossRefGoogle Scholar
Gurevich, B. and Lopatnikov, S. L., 1995. Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys. J. Int., 121, 933–947.CrossRefGoogle Scholar
Gutierrez, M. A., Braunsdorf, N. R., and Couzens, B. A., 2006. Calibration and ranking of pore-pressure prediction models. Leading Edge, 25(12), 1516–1523.CrossRefGoogle Scholar
Gvirtzman, H. and Roberts, P., 1991. Pore-scale spatial analysis of two immiscible fluids in porous media. Water Resources Res., 27, 1165–1176.CrossRefGoogle Scholar
Hacikoylu, P., Dvorkin, J., and Mavko, G., 2006. Resistivity–velocity transforms revisited. Leading Edge, 25, 1006–1009.CrossRefGoogle Scholar
Han, D.-H., 1986. Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and Unconsolidated Sediments. Ph.D. dissertation, Stanford University.Google Scholar
Han, D.-H., Nur, A., and Morgan, D., 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophys., 51, 2093–2107.CrossRefGoogle Scholar
Hanai, T., 1968. Electrical properties of emulsions. In Emulsion Science, ed. Sherman, P.. New York: Academic Press, pp. 353–478.Google Scholar
Hashin, Z. and Shtrikman, S., 1962. A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys., 33, 3125–3131.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S., 1963. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 11, 127–140.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., and Freidman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag.CrossRefGoogle Scholar
Hearmon, R. F. S., 1946. The elastic constants of anistropic materials. Rev. Mod. Phys., 18, 409–440.CrossRefGoogle Scholar
Hearmon, R. F. S., 1956. The elastic constants of anistropic materials II. Adv. Phys., 5, 323–382.CrossRefGoogle Scholar
Hearmon, R. F. S., 1979. The elastic constants of crystals and other anisotropic materials. In Landolt–Börnstein Tables, III/11, ed. Hellwege, K. H. and Hellwege, A. M.. Berlin: Springer-Verlag, pp. 1–244.Google Scholar
Hearmon, R. F. S., 1984. The elastic constants of crystals and other anisotropic materials. In Landolt–Börnstein Tables, III/18, ed. Hellwege, K. H. and Hellwege, A. M.. Berlin: Springer-Verlag, pp. 1–154.Google Scholar
Helbig, K., 1994. Foundations of Anisotropy for Exploration Seismics. Tarrytown, NY: Pergamon.Google Scholar
Helbig, K., 1998. A formalism for the consistent description of non-linear elasticity of anisotropic media. Rev. Inst. Français Pétrole, 53, 693–708.CrossRefGoogle Scholar
Helbig, K. and Schoenberg, M., 1987. Anomalous polarizations of elastic waves in transversely isotropic media. J. Acoust. Soc. Am., 81, 1235–1245.CrossRefGoogle Scholar
Helgerud, M., B., 2001. Wave Speeds in Gas Hydrate and Sediments Containing Gas Hydrate: a Laboratory and Modeling Study, Ph.D. dissertation, Stanford University.Google Scholar
Hermance, J. F., 1979. The electrical conductivity of materials containing partial melt, a simple model from Archie's law. Geophys. Res. Lett., 6, 613–616.CrossRefGoogle Scholar
Herrick, D. C., 1988. Conductivity models, pore geometry, and conduction mechanisms. Trans. Soc. Prof. Well Log Analysts, 29th Annual Logging Symposium, San Antonio, TX. Paper D.Google Scholar
Hicks, W. G. and Berry, J. E., 1956. Application of continuous velocity logs to determination of fluid saturation of reservoir rocks. Geophys., 21, 739.CrossRefGoogle Scholar
Hill, R., 1952. The elastic behavior of crystalline aggregate. Proc. Phys. Soc., LondonA, 65, 349–354.CrossRefGoogle Scholar
Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357–372.CrossRefGoogle Scholar
Hill, R., 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 13, 213–222.CrossRefGoogle Scholar
Hilterman, F., 1989. Is AVO the seismic signature of rock properties?Expanded Abstracts, Soc. Expl. Geophys., 59th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, p. 559.Google Scholar
Hoffmann, R., Xu, X., Batzle, M., et al., 2005. Effective pressure or what is the effect of pressure? Leading Edge, December, 1256–1260.
Horsrud, P., 2001. Estimating mechanical properties of shale from empirical correlations. SPE Drilling Completion, 16, 68–73.CrossRefGoogle Scholar
Hottman, C. E. and Johnson, R. K., 1965. Estimation of formation pressures from log derived shale properties. J. Petrol. Tech., 17, 717–722.CrossRefGoogle Scholar
Hovem, J. M. and Ingram, G. D., 1979. Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am., 66, 1807–1812.CrossRefGoogle Scholar
Hudson, J. A., 1980. Overall properties of a cracked solid. Math. Proc. Camb. Phil. Soc., 88, 371–384.CrossRefGoogle Scholar
Hudson, J. A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc., 64, 133–150.CrossRefGoogle Scholar
Hudson, J. A., 1990. Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophys. J. Int. 102, 465–469.CrossRefGoogle Scholar
Hudson, J. A. and Liu, E., 1999. Effective elastic properties of heavily faulted structures. Geophys., 64, 479–485.CrossRefGoogle Scholar
Hudson, J. A., Liu, E., and Crampin, S., 1996. The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int., 124, 105–112.CrossRefGoogle Scholar
Huffman, D. F. and Norwood, M. H., 1960. Specific heat and elastic constants of calcium fluoride at low temperatures. Phys. Rev., 117, 709–711.CrossRefGoogle Scholar
Humbert, P. and Plicque, F., 1972. Propriétés élastiques de carbonate rhomboedriques monocristallins: calcite, magnésite, dolomie. C. R. Acad. Sci., Paris B, 275, 391–394.Google Scholar
Huntington, H. B., 1958. The elastic constants of crystals. In Solid State Physics, vol. 7, ed. Seitz, F. and Turnbull, D.. New York: Academic Press, pp. 213–351.Google Scholar
Jackson, J. D., 1975. Classical Electrodynamics, 2nd edn. New York: John Wiley and Sons.Google Scholar
Jackson, P. D., Taylor-Smith, D., and Stanford, P. N., 1978. Resistivity–porosity–particle shape relationships for marine sands. Geophys., 43, 1250–1262.CrossRefGoogle Scholar
Jaeger, J., Cook, N. G., and Zimmerman, R., 2007. Fundamentals of Rock Mechanics, 4th edn. Malden, MA: Blackwell Ltd.Google Scholar
Jaeger, J. C. and Cook, N. G. W., 1969. Fundamentals of Rock Mechanics. London: Chapman and Hall Ltd.Google Scholar
Jakobsen, M., Hudson, J. A., Minshull, T. A., and Singh, S. C., 2000. Elastic properties of hydrate-bearing sediments using effective medium theory. J. Geophys. Res., 105, 561–577.CrossRefGoogle Scholar
Jakobsen, M., Hudson, J. A., and Johansen, T. A., 2003a. T-matrix approach to shale acoustics. Geophys. J. Int., 154, 533–558.CrossRefGoogle Scholar
Jakobsen, M., Johansen, T. A., and McCann, C., 2003b. The acoustic signature of fluid flow in a complex porous media. J. Appl. Geophys., 54, 219–246.CrossRefGoogle Scholar
Jenkins, G. M. and Watts, D. G., 1968. Spectral Analysis and Its Applications. San Francisco, CA: Holden-Day.Google Scholar
Jenkins, J., Johnson, D., Ragione, L., and Makse, H., 2005. Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J. Mech. Phys. Solids, 53, 197–225.CrossRefGoogle Scholar
Jílek, P., 2002a. Modeling and Inversion of Converted-wave Reflection Coefficients in Anisotropic Media: a Tool for Quantitative AVO Analysis. Ph.D. dissertation, Center for Wave Phenomena, Colorado School of Mines.Google Scholar
Jílek, P., 2002b. Converted PS-wave reflection coefficients in weakly anisotropic media. Pure Appl. Geophys., 159, 1527–1562.Google Scholar
Jizba, D. L., 1991. Mechanical and Acoustical Properties of Sandstones and Shales. Ph.D. dissertation, Stanford University.Google Scholar
Johnson, D. L. and Plona, T. J., 1982. Acoustic slow waves and the consolidation transition. J. Acoust. Soc. Am., 72, 556–565.CrossRefGoogle Scholar
Johnson, D. L., Koplic, J., and Dashen, R., 1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176, 379–400.CrossRefGoogle Scholar
Johnson, D. L., Schwartz, L. M., Elata, D., et al., 1998. Linear and nonlinear elasticity of granular media: stress-induced anisotropy of a random sphere pack. Trans. ASME, 65, 380–388.CrossRefGoogle Scholar
Johnson, P. A. and Rasolofosaon, P. N. J., 1996. Nonlinear elasticity and stress-induced anisotropy in rock. J. Geophys. Res., 100(B2), 3113–3124.CrossRefGoogle Scholar
Joshi, S. K. and Mitra, S. S., 1960. Debye characteristic temperature of solids. Proc. Phys. Soc., London, 76, 295–298.CrossRefGoogle Scholar
Juhász, I., 1981. Normalised Qv – The key to shaley sand evaluation using the Waxman–Smits equation in the absence of core data. Trans. Soc. Prof. Well Log Analysts, 22nd Annual Logging Symposium, Paper Z.
Kachanov, M., 1992. Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev., 45, 304–335.CrossRefGoogle Scholar
Kan, T. K. and Swan, H. W., 2001. Geopressure prediction from automatically derived seismic velocities. Geophys., 66, 1937–1946.CrossRefGoogle Scholar
Katahara, K., 2004. Fluid substitution in laminated shaly sands. SEG Extended Abstracts 74th Annual Meeting. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Keller, J. B., 1964. Stochastic equations and wave propagation in random media. Proc. Symp. Appl. Math., 16, 145–170.CrossRefGoogle Scholar
Kelvin, W.Thomson, , Lord, , 1856. Phil. Trans. R. Soc., 166, 481.
Kendall, K. and Tabor, D., 1971. An ultrasonic study of the area of contact between stationary and sliding surfaces. Proc. R. Soc., London A, 323, 321–340.CrossRefGoogle Scholar
Kennett, B. L. N., 1974. Reflections, rays and reverberations. Bull. Seismol. Soc. Am., 64, 1685–1696.Google Scholar
Kennett, B. L. N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.Google Scholar
King, M. S., 1983. Static and dynamic elastic properties of rocks from the Canadian Shield. Int. J. Rock Mech., 20, 237–241.CrossRefGoogle Scholar
Kjartansson, E., 1979. Constant Q wave propagation and attenuation. J. Geophys. Res., 84, 4737–4748.CrossRefGoogle Scholar
Klimentos, T. and McCann, C., 1990. Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones. Geophys., 55, 998–1014.CrossRefGoogle Scholar
Knight, R. and Dvorkin, J., 1992. Seismic and electrial properties of sandstones at low saturations. J. Geophys. Res., 97, 17 425–17 432.CrossRefGoogle Scholar
Knight, R. and Nolen-Hoeksema, R., 1990. A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution. Geophys. Res. Lett., 17, 1529–1532.CrossRefGoogle Scholar
Knight, R. J. and Nur, A., 1987. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophys., 52, 644–654.CrossRefGoogle Scholar
Knopoff, L., 1964. Q. Rev. Geophys., 2, 625–660.
Knott, C. G., 1899. Reflection and refraction of elastic waves, with seismological applications. Phil. Mag., London, 48(64–97), 567–569.CrossRefGoogle Scholar
Koesoemadinata, A.P. and McMechan, G. A., 2001. Empirical estimation of viscoelastic seismic parameters from petrophysical properties of sandstone. Geophys., 66, 1457–1470.CrossRefGoogle Scholar
Koesoemadinata, A. P. and McMechan, G. A., 2003. Correlations between seismic parameters, EM parameters, and petrophysical/petrological properties for sandstone and carbonate at low water saturations. Geophys., 68, 870–883.CrossRefGoogle Scholar
Koga, I., Aruga, M., and Yoshinaka, Y., 1958. Theory of plane elastic waves in a piezoelectric crystalline medium and determination of elastic and piezo-electric constants of quartz. Phys. Rev., 109, 1467–1473.CrossRefGoogle Scholar
Korringa, J., 1973. Theory of elastic constants of heterogeneous media. J. Math. Phys., 14, 509.CrossRefGoogle Scholar
Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Analyst, 31, November, 355–369.Google Scholar
Krishnamurty, T. S. G., 1963. Fourth-order elastic coefficients in crystals. Acta Cryst. 16, 839–840.CrossRefGoogle Scholar
Kröner, E., 1967. Elastic moduli of perfectly disordered composite materials. J. Mech. Phys. Solids, 15, 319.CrossRefGoogle Scholar
Kröner, E., 1977. Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids, 25, 137.CrossRefGoogle Scholar
Kröner, E., 1986. Statistical modeling. In Modeling Small Deformations of Polycrystals, ed. Gittus, J. and Zarka, J.. New York: Elsevier, pp. 229–291.CrossRefGoogle Scholar
Kumazawa, M. and Anderson, O. L., 1969. Elastic moduli, pressure derivatives, and temperature derivative of single-crystal olivine and single-crystal forsterite. J. Geophys. Res., 74, 5961–5972.CrossRefGoogle Scholar
Kuperman, W. A., 1975. Coherent components of specular reflection and transmission at a randomly rough two-fluid interface. J. Acoust. Soc. Am., 58, 365–370.CrossRefGoogle Scholar
Kuster, G. T. and Toksöz, M. N., 1974. Velocity and attenuation of seismic waves in two-phase media. Geophys., 39, 587–618.CrossRefGoogle Scholar
Lal, M., 1999. Shale stability: drilling fluid interaction and shale strength. SPE 54356, presented at SPE Latin American and Caribbean Petroleum Engineering Conference, Caracas, Venezuela, 21–23 April. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Lamb, H., 1945. Hydrodynamics. Mineola, NY: Dover.Google Scholar
Landau, L. D. and Lifschitz, E. D., 1959. Theory of Elasticity. Tarrytown, NY: Pergamon.Google Scholar
Landauer, R., 1952. The electrical resistance of binary metallic mixtures. J. Appl. Phys., 23, 779–784.CrossRefGoogle Scholar
Lashkaripour, G. R. and Dusseault, M. B., 1993. A statistical study on shale properties; relationship among principal shale properties. Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering, Canberra, Australia, Rotterdam: Balkema, pp. 195–200.Google Scholar
Lawn, B. R. and Wilshaw, T. R., 1975. Fracture of Brittle Solids. Cambridge: Cambridge University Press.Google Scholar
Lazarus, D., 1949. The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10 000 bars. Phys. Rev., 76, 545–553.CrossRefGoogle Scholar
Levin, F. K., 1971. Apparent velocity from dipping interface reflections. Geophys., 36, 510–516.CrossRefGoogle Scholar
Levin, F. K., 1979. Seismic velocities in transversely isotropic media. Geophys., 44, 918–936.CrossRefGoogle Scholar
Liebermann, R. C. and Schreiber, E., 1968. Elastic constants of polycrystalline hematite as a function of pressure to 3 kilobars. J. Geophys. Res., 73, 6585–6590.CrossRefGoogle Scholar
Liu, H. P., Anderson, D. L., and Kanamori, H., 1976. Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys. J. R. Astron. Soc., 47, 41–58.CrossRefGoogle Scholar
Lockner, D. A., Walsh, J. B., and Byerlee, J. D., 1977. Changes in velocity and attenuation during deformation of granite. J. Geophys. Res., 82, 5374–5378.CrossRefGoogle Scholar
Log Interpretation Charts, 1984. Publication SMP-7006. Houston, TX: Schlumberger Ltd.
Lucet, N., 1989. Vitesse et Attenuation des Ondes Élastiques Soniques et Ultrasoniques dans les Roches sous Pression de Confinement. Ph.D. dissertation, University of Paris.Google Scholar
Lucet, N. and Zinszner, B., 1992. Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks. Geophys., 57, 1018–1026.CrossRefGoogle Scholar
Ludwig, W. J., Nafe, J. E., and Drake, C. L., 1970. Seismic refraction. In The Sea, ed. Maxwell, A. E.. New York: Wiley-Interscience, vol. 4, pp. 53–84.Google Scholar
Makse, H. A., Gland, N., Johnson, D. L., and Schwartz, L. M., 1999. Why effective medium theory fails in granular materials. Phys. Rev. Lett., 83, 5070–5073.CrossRefGoogle Scholar
Makse, H. A., Johnson, D. L., and Schwartz, L. M., 2000. Packing of compressible granular materials. Phys. Rev. Lett., 84, 4160–4163.CrossRefGoogle ScholarPubMed
Makse, H. A., Gland, N., Johnson, D. L., and Schwartz, L. M., 2004. Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys. Rev. E, L70, 061302.1–061302.19.Google Scholar
Mallick, S., 2001. AVO and elastic impedance. Leading Edge, 20, 1094–1104.CrossRefGoogle Scholar
Manegold, E. and Engelhardt, W., 1933. Uber Kapillar-Systeme, XII, Die Berechnung des Stoffgehaltes heterogener Gerutstrukturen. Koll. Z., 63(2), 149–154.CrossRefGoogle Scholar
Marion, D., 1990. Acoustical, Mechanical and Transport Properties of Sediments and Granular Materials. Ph.D. dissertation, Stanford University.Google Scholar
Marion, D. and Nur, A., 1991. Pore-filling material and its effect on velocity in rocks. Geophys., 56, 225–230.CrossRefGoogle Scholar
Marion, D., Nur, A., Yin, H., and Han, D., 1992. Compressional velocity and porosity in sand–clay mixtures. Geophys., 57, 554–563.CrossRefGoogle Scholar
Marle, C. M., 1981. Multiphase Flow in Porous Media. Houston, TX: Gulf Publishing Company.Google Scholar
Marple, S. L., 1987. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Mason, W. P., 1943. Quartz crystal applications. Bell Syst. Tech. J., 22, 178.CrossRefGoogle Scholar
Mason, W. P., 1950. Piezoelectric Crystals and Their Application to Ultrasonics. New York: D. Van Nostrand Co., Inc.Google Scholar
Mavko, G., 1980. Velocity and attenuation in partially molten rocks. J. Geophys. Res., 85, 5173–5189.CrossRefGoogle Scholar
Mavko, G. and Bandyopadhyay, K., 2008. Approximate fluid substitution in weakly anisotropic VTI rocks. Geophys., in press.
Mavko, G. and Jizba, D., 1991. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophys., 56, 1940–1949.CrossRefGoogle Scholar
Mavko, G. and Mukerji, T., 1995. Pore space compressibility and Gassmann's relation. Geophys., 60, 1743–1749.CrossRefGoogle Scholar
Mavko, G. and Nolen-Hoeksema, R., 1994. Estimating seismic velocities in partially saturated rocks. Geophys., 59, 252–258.CrossRefGoogle Scholar
Mavko, G. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80, 1444–1448.CrossRefGoogle Scholar
Mavko, G. and Nur, A., 1978. The effect of nonelliptical cracks on the compressibility of rocks. J. Geophys. Res., 83, 4459–4468.CrossRefGoogle Scholar
Mavko, G. and Nur, A., 1997. The effect of a percolation threshold in the Kozeny–Carman relation. Geophys., 62, 1480–1482.CrossRefGoogle Scholar
Mavko, G., Kjartansson, E., and Winkler, K., 1979. Seismic wave attenuation in rocks. Rev. Geophys., 17, 1155–1164.CrossRefGoogle Scholar
Mavko, G., Chan, C., and Mukerji, T., 1995. Fluid substitution: estimating changes in VP without knowing VS. Geophys., 60, 1750–1755.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Godfrey, N., 1995. Predicting stress-induced velocity anisotropy in rocks. Geophys., 60, 1081–1087.CrossRefGoogle Scholar
Mazáč, O., Císlerová, M., Kelly, W. E., Landa, I., and Venhodová, D., 1990. Determination of hydraulic conductivities by surface geoelectrical methods. In Geotechnical and Environmental Geophysics, vol. II., ed. Ward, S. H.. Tulsa, OK: Society of Exploration Geophysicists, pp. 125–131.Google Scholar
McCann, D. M. and Entwisle, D. C., 1992. Determination of Young's modulus of the rock mass from geophysical well logs. In Geological Applications of Wireline Logs II, ed. Hurst, A., Griffiths, C. M., and Worthington, P. F.. Geological Society Special Publication, vol. 65. London: Geological Society, pp. 317–325.Google Scholar
McCoy, J. J., 1970. On the displacement field in an elastic medium with random variations in material properties. In Recent Advances in Engineering Science, vol. 2, ed. Eringen, A. C.. New York: Gordon and Breach pp. 235–254.Google Scholar
McGeary, R. K., 1967. Mechanical packing of spherical particles. J. Am. Ceram. Soc., 44(10), 513–522.CrossRefGoogle Scholar
McNally, G. H., 1987. Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration, 24, 381–395.CrossRefGoogle Scholar
McSkimin, H. J. and Bond, W. L., 1972. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys., 43, 2944–2948.CrossRefGoogle Scholar
McSkimin, H. J., Andreatch, P., and Thurston, R. N., 1965. Elastic moduli of quartz vs. hydrostatic pressure at 25 and 195.8 degrees Celsius. J. Appl. Phys., 36, 1632.CrossRefGoogle Scholar
Meador, R. A. and Cox, P. T., 1975. Dielectric constant logging: a salinity independent estimation of formation water volume. Soc. Petrol. Eng., Paper 5504.
Mehrabadi, M. M. and Cowin, S., 1989. Eigentorsors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math., 43, 15–41.CrossRefGoogle Scholar
Mehta, C. H., 1983. Scattering theory of wave propagation in a two-phase medium. Geophys., 48, 1359–1372.CrossRefGoogle Scholar
Mese, A. and Dvorkin, J., 2000. Static and dynamic moduli, deformation, and failure in shaley sand. DOE report, unpublished.Google Scholar
Middya, T. R. and Basu, A. N., 1986. Self-consistent T-matrix solution for the effective elastic properties of noncubic polycrystals. J. Appl. Phys., 59, 2368–2375.CrossRefGoogle Scholar
Milholland, P., Manghnani, M. H., Schlanger, S. O., and Sutton, G. H., 1980. Geoacoustic modeling of deep-sea carbonate sediments. J. Acoust. Soc. Am., 68, 1351–1360.CrossRefGoogle Scholar
Militzer, H. and Stoll, R., 1973. Einige Beitrageder geophysics zur primadatenerfassung im Bergbau: neue Bergbautechnik. Lipzig, 3, 21–25.Google Scholar
Milton, G. W., 1981. Bounds on the electromagnetic, elastic and other properties of two-component composites. Phys. Rev. Lett., 46, 542–545.CrossRefGoogle Scholar
Mindlin, R. D., 1949. Compliance of elastic bodies in contact. J. Appl. Mech., 16, 259–268.Google Scholar
Moos, D., Zoback, M. D., and Bailey, L., 1999. Feasibility study of the stability of openhole multilaterals, Cook Inlet, Alaska. Presentation at 1999 SPE Mid-Continent Operations Symposium, Oklahoma City, OK, 28–31 March, SPE 52186.Google Scholar
Mukerji, T. and Mavko, G., 1994. Pore fluid effects on seismic velocity in anisotropic rocks. Geophys., 59, 233–244.CrossRefGoogle Scholar
Mukerji, T., Berryman, J. G., Mavko, G., and Berge, P. A., 1995a. Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophys. Res. Lett., 22, 555–558.CrossRefGoogle Scholar
Mukerji, T., Mavko, G., Mujica, D., and Lucet, N., 1995b. Scale-dependent seismic velocity in heterogeneous media. Geophys., 60, 1222–1233.CrossRefGoogle Scholar
Mukerji, T., Jørstad, A., Mavko, G., and Granli, J. R., 1998. Near and far offset impedances: seismic attributes for identifying lithofacies and pore fluids. Geophy. Res. Lett., 25, 4557–4560.CrossRefGoogle Scholar
Müller, G., Roth, M., and Korn, M., 1992. Seismic-wave traveltimes in random media. Geophys. J. Int., 110, 29–41.CrossRefGoogle Scholar
Muller, T. M. and Gurevich, B., 2005a. A first-order statistical smoothing approximation for the coherent wave field in porous random media. J. Acoust. Soc. Am., 117, 1796–1805.CrossRefGoogle ScholarPubMed
Muller, T. M. and Gurevich, B., 2005b. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. J. Acoust. Soc. Amer., 117, 2732–2741.CrossRefGoogle ScholarPubMed
Muller, T. M. and Gurevich, B., 2006. Effective hydraulic conductivity and diffusivity of randomly heterogeneous porous solids with compressible constituents. Appl. Phys. Lett., 88, 121924.CrossRefGoogle Scholar
Muller, T. M., Lambert, G., and Gurevich, B., 2007. Dynamic permeability of porous rocks and its seismic signatures. Geophys., 72, E149–E158.CrossRefGoogle Scholar
Mura, T., 1982. Micromechanics of Defects in Solids. The Hague: Kluwer.CrossRefGoogle Scholar
Murnaghan, F. D., 1951. Finite Deformation of an Elastic Solid. New York: John Wiley.Google Scholar
Murphy, W. F., III, 1982. Effects of Microstructure and Pore Fluids on the Acoustic Properties of Granular Sedimentary Materials. Ph.D. dissertation, Stanford University.Google Scholar
Murphy, W. F., 1984. Acoustic measures of partial gas saturation in tight sandstones. J. Geophys. Res., 89, 11 549–11 559.CrossRefGoogle Scholar
Murphy, W. F., Winkler, K. W., and Kleinberg, R. L., 1984. Contact microphysics and viscous relaxation in sandstones. In Physics and Chemistry of Porous Media, ed. Johnson, D. L. and Sen, P. N.. New York: American Institute of Physics, pp. 176–190.Google Scholar
Murphy, W. F., Schwartz, L. M., and Hornby, B., 1991. Interpretation physics of VP and VS in sedimentary rocks. Trans. SPWLA 32nd Ann. Logging Symp., 1–24.
Myer, L., 2000. Fractures as collections of cracks. Int. J. Rock Mech., 37, 231–243.CrossRefGoogle Scholar
Nishizawa, O., 1982. Seismic velocity anisotropy in a medium containing oriented cracks – transversely isotropic case. J. Phys. Earth, 30, 331–347.CrossRefGoogle Scholar
Nolet, G., 1987. Seismic wave propagation and seismic tomography. In Seismic Tomography, ed. Nolet, G.. Dordrecht: D. Reidel Publication Co., pp. 1–23.CrossRefGoogle Scholar
Norris, A. N., 1985. A differential scheme for the effective moduli of composites. Mech. Mater., 4, 1–16.CrossRefGoogle Scholar
Norris, A. N. and Johnson, D. L., 1997. Nonlinear elasticity of granular media. ASME J. Appl. Mech., 64, 39–49.CrossRefGoogle Scholar
Norris, A. N., Sheng, P., and Callegari, A. J., 1985. Effective-medium theories for two-phase dielectric media. J. Appl. Phys., 57, 1990–1996.CrossRefGoogle Scholar
Nur, A., 1971. Effects of stress on velocity anisotropy in rocks with cracks. J. Geophys. Res., 76, 2022–2034.CrossRefGoogle Scholar
Nur, A. and Byerlee, J. D., 1971. An exact effective stress law for elastic deformation of rocks with fluids. J. Geophys. Res., 76, 6414–6419.CrossRefGoogle Scholar
Nur, A. and Simmons, G., 1969a. Stress-induced velocity anisotropy in rocks: an experimental study. J. Geophys. Res., 74, 6667.CrossRefGoogle Scholar
Nur, A. and Simmons, G., 1969b. The effect of viscosity of a fluid phase on velocity in low-porosity rocks. Earth Planet. Sci. Lett., 7, 99–108.CrossRefGoogle Scholar
Nur, A., Marion, D., and Yin, H., 1991. Wave velocities in sediments. In Shear Waves in Marine Sediments, ed. Hovem, J. M., Richardson, M. D., and Stoll, R. D.. Dordrecht: Kluwer Academic Publishers, pp. 131–140.CrossRefGoogle Scholar
Nur, A., Mavko, G., Dvorkin, J., and Gal, D., 1995. Critical porosity: the key to relating physical properties to porosity in rocks. In Proc. 65th Ann. Int. Meeting, Soc. Expl. Geophys., vol. 878. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
O'Connell, R. J. and Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79, 4626–4627.CrossRefGoogle Scholar
O'Connell, R. J. and Budiansky, B., 1977. Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res., 82, 5719–5735.CrossRefGoogle Scholar
O'Doherty, R. F. and Anstey, N. A., 1971. Reflections on amplitudes. Geophys. Prospect., 19, 430–458.CrossRefGoogle Scholar
Ohno, I., Yamamoto, S., and Anderson, O. L., 1986. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. J. Phys. Chem. Solids, 47, 1103–1108.CrossRefGoogle Scholar
Olhoeft, G. R., 1979. Tables of room temperature electrical properties for selected rocks and minerals with dielectric permittivity statistics. US Geological Survey Open File Report 79–993.
Osborn, J. A., 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351–357.CrossRefGoogle Scholar
Ozkan, H. and Jamieson, J. C., 1978. Pressure dependence of the elastic constants of nonmetamict zircon. Phys. Chem. Minerals, 2, 215–224.CrossRefGoogle Scholar
Paillet, F. L. and Cheng, C. H., 1991. Acoustic Waves in Boreholes. Boca Raton, FL: CRC Press, p. 264.Google Scholar
Papadakis, E. P., 1963. Attenuation of pure elastic modes in NaCl single crystals. J. Appl. Phys., 34, 1872–1876.CrossRefGoogle Scholar
Paterson, M. S. and Weiss, L. E., 1961. Symmetry concepts in the structural analysis of deformed rocks. Geolog. Soc. Am. Bull., 72, 841.CrossRefGoogle Scholar
Pedersen, B. K. and Nordal, K., 1999. Petrophysical evaluation of thin beds: a review of the Thomas–Stieber approach. Course 24034 Report, Norwegian University of Science and Technology.
Peselnick, L. and Robie, R. A., 1963. Elastic constants of calcite. J. Appl. Phys., 34, 2494–2495.CrossRefGoogle Scholar
Pickett, G. R., 1963. Acoustic character logs and their applications in formation evaluation. J. Petrol. Technol., 15, 650–667.Google Scholar
Ponte-Castaneda, P. and Willis, J. R., 1995. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids, 43, 1919–1951.CrossRefGoogle Scholar
Postma, G. W., 1955. Wave propagation in a stratified medium. Geophys., 20, 780–806.CrossRefGoogle Scholar
Poupon, A. and Leveaux, J., 1971. Evaluation of water saturations in shaley formations. Trans. Soc. Prof. Well Log Analysts, 12th Annual Logging Symposium, Paper O.Google Scholar
Prasad, M. and Manghnani, M. H., 1997. Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophys., 62, 1163–1176.CrossRefGoogle Scholar
Prioul, R. and Lebrat, T., 2004. Calibration of velocity–stress relationships under hydrostatic stress for their use under non-hydrostatic stress conditions. SEG Expanded Abstracts 74th International Meeting, October 2004.
Prioul, R., Bakulin, A., and Bakulin, V., 2004. Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: theory and laboratory verification. Geophys., 69, 415–425.CrossRefGoogle Scholar
Pšenčík, I. and Martins, J. L., 2001. Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl. Geophys., 151, 699–718.CrossRefGoogle Scholar
Pšenčík, I. and Vavryčuk, V., 1998. Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl. Geophys., 151, 699–718.CrossRefGoogle Scholar
Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W., 1990. Transmission of seismic waves across single natural fractures. J. Geophys. Res., 95, 8617–8638.CrossRefGoogle Scholar
Rafavich, F., Kendal, C. H. St. C., and Todd, T. P., 1984. The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophys., 49, 1622–1636.CrossRefGoogle Scholar
Ransom, R. C., 1984. A contribution towards a better understanding of the modified Archie formation resistivity factor relationship. Log Analyst, 25, 7–15.Google Scholar
Rasolofosaon, P., 1998. Stress-induced seismic anisotropy revisited. Rev. Inst. Français Pétrole, 53, 679–692.CrossRefGoogle Scholar
Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980. An improved sonic transit time-to-porosity transform. Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium, Paper P.Google Scholar
Renshaw, C. E., 1995. On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res., 100, 24 629–24 636.CrossRefGoogle Scholar
Resnick, J. R., Lerche, I., and Shuey, R. T., 1986. Reflection, transmission, and the generalized primary wave. Geophys. J. R. Astron. Soc., 87, 349–377.CrossRefGoogle Scholar
Reuss, A., 1929. Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Ang. Math. Mech., 9, 49–58.CrossRefGoogle Scholar
Risnes, R., Bratli, R., and Horsrud, P., 1982. Sand stresses around a borehole. J. Soc. Petr. Eng. 22, 883–898.CrossRefGoogle Scholar
Riznichenko, Y. V., 1949. On seismic quasi-anisotropy. Izv. Akad. Nauk SSSR, Geograf. Geofiz, 13, 518–544.Google Scholar
Rosenbaum, J. H., 1974. Synthetic microseismograms: logging in porous formations. Geophys., 39, 14–32.CrossRefGoogle Scholar
Roth, M., Müller, G., and Sneider, R., 1993. Velocity shift in random media. Geophys. J. Int., 115, 552–563.CrossRefGoogle Scholar
Rüger, A., 1995. P-wave reflection coefficients for transversely isotropic media with vertical and horizontal axis of symmetry. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 278–281.Google Scholar
Rüger, A., 1996. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Expanded Abstracts, Soc. Expl. Geophys., 66th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 1810–1813.Google Scholar
Rüger, A., 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophys., 62, 713–722.CrossRefGoogle Scholar
Rüger, A., 2001. Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Rumpf, H. and Gupte, A. R., 1971. Einflüsse der Porosität und Korngrössenverteilung im Widerstandsgesetz der Porenströmung. Chem-Ing.-Tech., 43, 367–375.CrossRefGoogle Scholar
Ryzhova, T. V., Aleksandrov, K. S., and Korobkova, V. M., 1966. The elastic properties of rock-forming minerals, V. Additional data on silicates. Bull. Acad. Sci. USSR, Earth Phys., no. 2, 111–113.Google Scholar
Rzhevsky, V. and Novick, G., 1971. The Physics of Rocks. Moscow: MIR Publishing.Google Scholar
Sahay, P. N., 1996. Elastodynamics of deformable porous media. Proc. R. Soc., LondonA, 452, 1517–1529.CrossRefGoogle Scholar
Sahay, P. N., 2008. On Biot slow S-wave. Geophys., 72, N19–N33.
Sahay, P. N., Spanos, T. J. T., and Cruz, V., 2001. Seismic wave propagation in inhomogeneous and anisotropic porous media. Geophys. J. Int., 145, 209–222.CrossRefGoogle Scholar
Sahimi, M., 1995. Flow and Transport in Porous Media and Fractured Rock, VCH Verlagsgesellschaft mbH, Weinheim, 482 pp.
Sarkar, D., Bakulin, A., and Kranz, R., 2003. Anisotropic inversion of seismic data for stressed media: theory and a physical modeling study on Berea sandstone. Geophys., 68, 690–704.CrossRefGoogle Scholar
Sayers, C. M., 1988a. Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks. Ultrasonics, 26, 73–77.CrossRefGoogle Scholar
Sayers, C. M., 1988b. Stress-induced ultrasonic wave velocity anisotropy in fractured rock. Ultrasonics, 26, 311–317.CrossRefGoogle Scholar
Sayers, C. M., 1995. Stress-dependent seismic anisotropy of shales. Expanded Abstracts, Soc. Expl. Geophys., 65th Annual International Meeting. Tulsa, OK: Society of Exploration Geophysicists, pp. 902–905.Google Scholar
Sayers, C. M., 2004. Seismic anisotropy of shales: What determines the sign of Thomsen delta parameters?Expanded A&b Abstract, SEG 74th International Exposition. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Sayers, C. M. and Kachanov, M., 1991. A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. Int. J. Solids Struct., 12, 81–97.Google Scholar
Sayers, C. M. and Kachanov, M., 1995. Microcrack-induced elastic wave anisotropy of brittle rocks. J. Geophys. Res., 100, 4149–4156.CrossRefGoogle Scholar
Sayers, C. M., Munster, J. G., and King, M. S., 1990. Stress-induced ultrasonic anisotropy in Berea sandstone. Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 27, 429–436.CrossRefGoogle Scholar
Schlichting, H., 1951. Grenzschicht-Theorie. Karlsruhe: G. Braun.Google Scholar
Schlumberger, , 1989. Log Interpretation Principles/Applications. Houston, TX: Schlumberger Wireline & Testing.Google Scholar
Schlumberger, , 1991. Log Interpretation Principles/Applications. Houston, TX: Schlumberger Wireline & Testing.Google Scholar
Schmitt, D. P., 1989. Acoustic multipole logging in transversely isotropic poroelastic formations. J. Acoust. Soc. Am., 86, 2397–2421.CrossRefGoogle Scholar
Schoenberg, M., 1980. Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Amer., 68, 1516–1521.CrossRefGoogle Scholar
Schoenberg, M. and Douma, J., 1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys. Prospect., 36, 571–590.CrossRefGoogle Scholar
Schoenberg, M. and Muir, F., 1989. A calculus for finely layered anisotropic media. Geophys., 54, 581–589.CrossRefGoogle Scholar
Schoenberg, M. and Protázio, J., 1992. “Zoeppritz” rationalized and generalized to anisotropy. J. Seismic Explor., 1, 125–144.Google Scholar
Schön, J. H., 1996. Physical Properties of Rocks. Oxford: Elsevier.Google Scholar
Schwerdtner, W. M., Tou, J. C.-M., and Hertz, P. B., 1965. Elastic properties of single crystals of anhydrite. Can. J. Earth Sci., 2, 673–683.CrossRefGoogle Scholar
Scott, G. D. and Kilgour, D. M., 1969. The density of random close packing of spheres. Brit. J. Appl. Phys. (J. Phys. D), 2(2), 863–866.CrossRefGoogle Scholar
Segel, L. A., 1987. Mathematics Applied to Continuum Mechanics. Mineola, NY: Dover.Google Scholar
Sen, P. N. and Goode, P. A., 1988. Shaley sand conductivities at low and high salinities. Trans. Soc. Prof. Well Log Analysts, 29th Annual Logging Symposium, Paper F.Google Scholar
Sen, P. N., Scala, C., and Cohen, M. H., 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophys., 46, 781–795.CrossRefGoogle Scholar
Seshagiri Rao, T., 1951. Elastic constants of barytes and celestite. Proc. Ind. Acad. Sci. A, 33, 251–256.Google Scholar
Shapiro, S. A. and Hubral, P., 1995. Frequency-dependent shear-wave splitting and velocity anisotropy due to elastic multilayering. J. Seismic Explor., 4, 151–168.Google Scholar
Shapiro, S. A. and Hubral, P., 1996. Elastic waves in thinly layered sediments: the equivalent medium and generalized O'Doherty–Anstey formulas. Geophys., 61, 1282–1300.CrossRefGoogle Scholar
Shapiro, S. A. and Hubral, P., 1999. Elastic Waves in Random Media: Fundamentals of Seismic Stratigraphic Filtering. Berlin: Springer-Verlag.Google Scholar
Shapiro, S. A. and Zien, H., 1993. The O'Doherty–Anstey formula and localization of seismic waves. Geophys., 58, 736–740.CrossRefGoogle Scholar
Shapiro, S. A., Hubral, P., and Zien, H., 1994. Frequency-dependent anisotropy of scalar waves in a multilayered medium. J. Seismic Explor., 3, 37–52.Google Scholar
Sharma, M. M. and Tutuncu, A. N., 1994. Grain contact adhesion hysteresis: a mechanism for attenuation of seismic waves. Geophys. Res. Lett., 21, 2323–2326.CrossRefGoogle Scholar
Sharma, M. M., Garrouch, A., and Dunlap, H. F., 1991. Effects of wettability, pore geometry, and stress on electrical conduction in fluid-saturated rocks. Log Analyst, 32, 511–526.Google Scholar
Sharma, M. M., Tutuncu, A. N., and Podia, A. L., 1994. Grain contact adhesion hysteresis: a mechanism for attenuation of seismic waves in sedimentary granular media. In Extended Abstracts, Soc. Expl. Geophys., 64th Annual International Meeting, Los Angeles. Tulsa, OK: Society of Exploration Geophysicists, pp. 1077–1080.Google Scholar
Shen, L. C., 1985. Problems in dielectric-constant logging and possible routes to their solution. Log Analyst, 26, 14–25.Google Scholar
Sheriff, R. E., 1991. Encyclopedic Dictionary of Exploration Geophysics, 3rd edn. Tulsa, OK: Society of Exploration Geophysics.Google Scholar
Sherman, M. M., 1986. The calculation of porosity from dielectric constant measurements: a study using laboratory data. Log Analyst, Jan.–Feb., 15–24.
Sherman, M. M., 1988. A model for the frequency dependence of the dielectric permittivity of reservoir rocks. Log Analyst, Sept.–Oct., 358–369.
Shuey, R. T., 1985. A simplification of the Zoeppritz equations. Geophys., 50, 609–614.CrossRefGoogle Scholar
Siggins, A. F. and Dewhurst, D. N., 2003. Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophys. Res. Lett., 30, 1089 doi:10.1029/2002GL016143.CrossRefGoogle Scholar
Simandoux, P., 1963. Dielectric measurements on porous media: application to the measurement of water saturations: study of the behavior of argillaceous formations. Rev. Inst. Français Petrole, 18, supplementary issue, 193–215.Google Scholar
Simmons, G., 1965. Single crystal elastic constants and calculated aggregate properties. J. Grad. Res. Center, SMU, 34, 1–269.Google Scholar
Simmons, G. and Birch, F., 1963. Elastic constants of pyrite. J. Appl. Phys., 34, 2736–2738.CrossRefGoogle Scholar
Skelt, C., 2004. Fluid substitution in laminated sands. Leading Edge, 23, 485–489.CrossRefGoogle Scholar
Smith, G. C. and Gidlow, P. M., 1987. Weighted stacking for rock property estimation and detection of gas. Geophys. Prospect., 35, 993–1014.CrossRefGoogle Scholar
Smith, W. O., Foote, P. D., and Busand, P. G., 1929. Packing of homogeneous spheres. Phys. Rev., 34(2), 1271–1274.CrossRefGoogle Scholar
Sneddon, I. N. and Lowergrub, M., 1969. Crack Problems in the Classical Theory of Elasticity. New York: John Wiley and Sons.Google Scholar
Soga, N., 1967. Elastic constants of garnet under pressure and temperature. J. Geophys. Res., 72, 4227–4234.CrossRefGoogle Scholar
Spangenburg, K. and Haussuhl, S., 1957. Die elastischen Konstanten der Alkalihalogenide. Z. Kristallogr., 109, 422–437.CrossRefGoogle Scholar
Spanos, T. J. T., 2002. The Thermophysics of Porous Media. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Spratt, R. S., Goins, N. R., and Fitch, T. J., 1993. Pseudo-shear – the analysis of AVO. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M., Invest. Geophys., No. 8. Tulsa, OK: Society of Exploration Geophysicists, pp. 37–56.Google Scholar
Stoll, R. D., 1974. Acoustic waves in saturated sediments. In Physics of Sound in Marine Sediments, ed. Hampton, L. D.. New York: Plenum, pp. 19–39.CrossRefGoogle Scholar
Stoll, R. D., 1977. Acoustic waves in ocean sediments. Geophys., 42, 715–725.CrossRefGoogle Scholar
Stoll, R. D., 1989. Sediment Acoustics. Berlin: Springer-Verlag, p. 154.Google Scholar
Stoll, R. D. and Bryan, G. M., 1970. Wave attenuation in saturated sediments. J. Acoust. Soc. Am., 47, 1440–1447.CrossRefGoogle Scholar
Stoner, E. C., 1945. The demagnetizing factors for ellipsoids. Philos. Mag., 36, 803–821.CrossRefGoogle Scholar
Strandenes, S., 1991. Rock Physics Analysis of the Brent Group Reservoir in the Oseberg Field. Stanford Rockphysics and Borehole Geophysics Project, special volume.
Sumino, Y., Kumazawa, M., Nishizawa, O., and Pluschkell, W., 1980. The elastic constants of single-crystal Fe1−xO, MnO, and CoO, and the elasticity of stochiometric magnesiowustite. J. Phys. Earth, 28, 475–495.CrossRefGoogle Scholar
Tang, X.-M. and Cheng, A., 2004. Quantitative Borehole Acoustic Methods. Amsterdam: Elsevier.Google Scholar
Tang, X.-M., Cheng, A., and Toksöz, M. N., 1991. Dynamic permeability and borehole Stoneley waves: a simplified Biot–Rosenbaum model. J. Acoust. Soc. Am., 90, 1632–1646.CrossRefGoogle Scholar
Thomas, E. C. and Stieber, S. J., 1975. The distribution of shale in sandstones and its effect upon porosity. In Trans. 16th Annual Logging Symposium of the SPWLA, paper T.Google Scholar
Thomas, E. C. and Stieber, S. J., 1977. Log derived shale distributions in sandstone and its effect upon porosity, water saturation, and permeability. In Trans. 6th Formation Evaluation Symposium of the Canadian Well Logging Society.
Thomsen, L., 1986. Weak elastic anisotropy. Geophys., 51, 1954–1966.CrossRefGoogle Scholar
Thomsen, L., 1993. Weak anisotropic reflections. In Offset Dependent Reflectivity – Theory and Practice of AVO Analysis, ed. Castagna, J. P. and Backus, M., Invest. Geophys., No. 8. Tulsa, OK: Society of Exploration Geophysicists, pp. 103–111.Google Scholar
Thomson, W., 1878. Mathematical theory of elasticity. Elasticity, Encyclopedia Britannica, 7, 819–825.Google Scholar
Timoshenko, S. P. and Goodier, J. N., 1934. Theory of Elasticity. New York: McGraw-Hill.Google Scholar
Tixier, M. P. and Alger, R. P., 1967. Log evaluation of non-metallic mineral deposits. Trans. SPWLA 8th Ann. Logging Symp., Denver, June 11–14, Paper R.
Todd, T. and Simmons, G., 1972. Effect of pore pressure on the velocity of compressional waves in low porosity rocks. J. Geophys. Res., 77, 3731–3743.CrossRefGoogle Scholar
Topp, G. C., Davis, J. L., and Annan, A. P., 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resource Res., 16, 574–582.CrossRefGoogle Scholar
Tosaya, C. A., 1982. Acoustical Properties of Clay-bearing Rocks. Ph.D. dissertation, Stanford University.Google Scholar
Tosaya, C. A. and Nur, A., 1982. Effects of diagenesis and clays on compressional velocities in rocks. Geophys. Res. Lett., 9, 5–8.CrossRefGoogle Scholar
Truesdell, C., 1965. Problems of Nonlinear Elasticity. New York: Gordon and Breach.Google Scholar
Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophys., 62, 1292–1309.CrossRefGoogle Scholar
Tsvankin, I., 2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. New York: Pergamon.Google Scholar
Tucker, M. E., 2001. Sedimentary Petrology, 3rd edn. Oxford: Blackwell Science.Google Scholar
Tutuncu, A. N., 1992. Velocity Dispersion and Attenuation of Acoustic Waves in Granular Sedimentary Media. Ph.D. dissertation, University of Texas, Austin.Google Scholar
Tutuncu, A. N. and Sharma, M. M., 1992. The influence of grain contact stiffness and frame moduli in sedimentary rocks. Geophys., 57, 1571–1582.CrossRefGoogle Scholar
Urmos, J. and Wilkens, R. H., 1993. In situ velocities in pelagic carbonates: new insights from ocean drilling program leg 130, Ontong Java. J. Geophys. Res., 98(B5), 7903–7920.CrossRefGoogle Scholar
Vaughan, M. T. and Guggenheim, , 1986. Elasticity of muscovite and its relationship to crustal structure. J. Geophys. Res., 91, 4657–4664.CrossRefGoogle Scholar
Vavryčuk, V. and Pšenčik, I., 1998. PP-wave reflection coefficients in weakly anisotropic elastic media. Geophys., 63(6), 2129–2141.CrossRefGoogle Scholar
Verma, R. K., 1960. Elasticity of some high-density crystals. J. Geophys. Res., 65, 757–766.CrossRefGoogle Scholar
Vernik, L., Bruno, M., and Bovberg, C., 1993. Empirical relations between compressive strength and porosity of siliciclastic rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 30(7), 677–680.CrossRefGoogle Scholar
Vernik, L., Fisher, D., and Bahret, S., 2002. Estimation of net-to-gross from P and S impedance in deepwater turbidites. Leading Edge, 21, 380–387.CrossRefGoogle Scholar
Voigt, W., 1890. Bestimmung der Elastizitätskonstanten des brasilianischen Turmalines. Ann. Phys. Chem., 41, 712–729.CrossRefGoogle Scholar
Voigt, W., 1907. Bestimmung der Elastizitätskonstanten von Eisenglanz. Ann. Phys., 24, 129–140.CrossRefGoogle Scholar
Wachtman, J. B., Tefft, W. E., Lam, D. G., and Strinchfield, R. P., 1960. Elastic constants of synthetic single crystal corundum at room temperature. J. Res. Natl. Bur. Stand., 64A, 213–228.CrossRefGoogle Scholar
Waddell, H., 1932. Volume, shape and roundness of rock particles. J. Geol. 40, 443–451.CrossRefGoogle Scholar
Wadsworth, J., 1960. Experimental examination of local processes in packed beds of homogeneous spheres. Nat. Res. Council of Canada, Mech. Eng. Report MT-41 February.
Walls, J., Nur, A., and Dvorkin, J., 1991. A slug test method in reservoirs with pressure sensitive permeability. Proc. 1991 Coalbed Methane Symp., University of Alabama, Tuscaloosa, May 13–16, pp. 97–105.Google Scholar
Walsh, J. B., 1965. The effect of cracks on the compressibility of rock. J. Geophys. Res., 70, 381–389.CrossRefGoogle Scholar
Walsh, J. B., 1969. A new analysis of attenuation in partially melted rock. J. Geophys. Res., 74, 4333.CrossRefGoogle Scholar
Walsh, J. B., Brace, W. F., and England, A. W., 1965. Effect of porosity on compressibility of glass. J. Am. Ceramic Soc., 48, 605–608.CrossRefGoogle Scholar
Walton, K., 1987. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35, 213–226.CrossRefGoogle Scholar
Wang, H. F., 2000. Theory of Linear Poroelasticity. Princeton, NJ: Princeton University Press.Google Scholar
Wang, Z., 2000a. Dynamic versus static properties of reservoir rocks, in seismic and acoustic velocities in reservoir rocks. SEG Geophysics Reprint Series, 19, 531–539.Google Scholar
Wang, Z., 2002. Seismic anisotropy in sedimentary rocks, Parts I and II. Geophys., 67, 1415–1440.CrossRefGoogle Scholar
Wang, Z. and Nur, A., 1992. Seismic and Acoustic Velocities in Reservoir Rocks, vol. 2, Theoretical and Model Studies, Soc. Expl. Geophys., Geophysics Reprint Series. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Wang, Z. and Nur, A. (eds.), 2000. Seismic and Acoustic Velocities in Reservoir Rocks, vol. 3, Recent Developments, Geophysics Reprint Series, no. 19. Tulsa, OK: Society of Exploration Geophysicists.Google Scholar
Ward, S. H. and Hohmann, G. W., 1987. Electromagnetic theory for geophysical applications. In Electromagnetic Methods in Applied Geophysics, vol. I, Theory, ed. Nabhigian, M. N.. Tulsa, OK: Society of Exploration Geophysicists, pp. 131–311.Google Scholar
Watt, J. P., Davies, G. F., and O'Connell, R. J., 1976. The elastic properties of composite materials. Rev. Geophys. Space Phys., 14, 541–563.CrossRefGoogle Scholar
Waxman, M. H. and Smits, L. J. M., 1968. Electrical conductivities in oil-bearing shaley sands. Soc. Petrol Eng. J., 8, 107–122.CrossRefGoogle Scholar
Weidner, D. J. and Carleton, H. R., 1977. Elasticity of coesite. J. Geophys. Res., 82, 1334–1346.CrossRefGoogle Scholar
Weidner, D. J. and Hamaya, N., 1983. Elastic properties of the olivine and spinel polymorphs of Mg2GeO4 and evaluation of elastic analogues. Phys. Earth Planetary Interiors, 33, 275–283.CrossRefGoogle Scholar
Weidner, D. J., Bass, J. D., Ringwood, E., and Sinclair, W., 1982. The single-crystal elastic moduli of stishovite. J. Geophys. Res., 87, 4740–4746.CrossRefGoogle Scholar
Weingarten, J. S. and Perkins, T. K., 1995. Prediction of sand production in wells: methods and Gulf of Mexico case study. J. Petrol. Tech., 596–600.CrossRefGoogle Scholar
Whitcombe, D. N., 2002. Elastic impedance normalization. Geophys., 67, 59–61.CrossRefGoogle Scholar
Whitcombe, D. N., Connolly, P. A., Reagan, R. L., and Redshaw, T. C., 2002. Extended elastic impedance for fluid and lithology prediction. Geophys., 67, 63–67.CrossRefGoogle Scholar
White, J. E., 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophys., 40, 224–232.CrossRefGoogle Scholar
White, J. E., 1983. Underground Sound: Application of Seismic Waves. New York: Elsevier.Google Scholar
White, J. E., 1986. Biot–Gardner theory of extensional waves in porous rods. Geophys., 51, 742–745.CrossRefGoogle Scholar
Widmaier, M., Shapiro, S. A., and Hubral, P., 1996. AVO correction for a thinly layered reflector overburden. Geophys., 61, 520–528.CrossRefGoogle Scholar
Wiggins, R., Kenny, G. S., and McClure, C. D., 1983. A method for determining and displaying the shear-velocity reflectivities of a geologic formation. European Patent Application 0113944.
Williams, D. M., 1990. The acoustic log hydrocarbon indicator. Soc. Prof. Well Log Analysts, 31st Ann. Logging Symp., Paper W.Google Scholar
Willis, J. R., 1977. Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 185–202.CrossRefGoogle Scholar
Winkler, K., 1986. Estimates of velocity dispersion between seismic and ultrasonic frequencies. Geophys., 51, 183–189.CrossRefGoogle Scholar
Winkler, K. W., 1983. Contact stiffness in granular porous materials: comparison between theory and experiment. Geophys. Res. Lett., 10, 1073–1076.CrossRefGoogle Scholar
Winkler, K. W., 1985. Dispersion analysis of velocity and attenuation in Berea sandstone. J. Geophys. Res., 90, 6793–6800.CrossRefGoogle Scholar
Winkler, K. W. and Murphy, W. F., III, 1995. Acoustic velocity and attenuation in porous rocks. In Rock Physics and Phase Relations, A Handbook of Physical Constants, AGU Reference Shelf 3. Washington, DC: American Geophysical Union.Google Scholar
Winkler, K. W. and Nur, A., 1979. Pore fluids and seismic attenuation in rocks. Geophys. Res. Lett., 6, 1–4.CrossRefGoogle Scholar
Woeber, A. F., Katz, S., and Ahrens, T. J., 1963. Elasticity of selected rocks and minerals. Geophys., 28, 658–663.CrossRefGoogle Scholar
Wong, S. W., Kenter, C. J., Schokkenbroek, H., Regteren, J., and Bordes, P. F., 1993. Optimising shale drilling in the Northern North Sea; borehole stability considerations. SPE paper 26736, Offshore Europe Conference, Aberdeen, 7–10 September.Google Scholar
Wood, A. W., 1955. A Textbook of Sound. New York: McMillan Co.Google Scholar
Worthington, P. F., 1985. Evolution of shaley sand concepts in reservoir evaluation. Log Analyst, 26, 23–40.Google Scholar
Wu, T. T., 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Structures, 2, 1–8.CrossRefGoogle Scholar
Wyllie, M. R. J. and Gregory, A. R., 1953. Formation factors of unconsolidated porous media: influence of particle shape and effect of cementation. Trans. Am. Inst. Mech. Eng., 198, 103–110.Google Scholar
Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophys., 21, 41–70.CrossRefGoogle Scholar
Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophys., 23, 459–493.CrossRefGoogle Scholar
Wyllie, M. R. J., Gardner, G. H. F., and Gregory, A. R., 1963. Studies of elastic wave attenuation in porous media. Geophys., 27, 569–589.CrossRefGoogle Scholar
Xu, S. and White, R. E., 1994. A physical model for shear-wave velocity prediction. In Expanded Abstracts, 56th Eur. Assoc. Expl. Geoscientists Meet. Tech. Exhib., Vienna, p. 117.Google Scholar
Xu, S. and White, R. E., 1995. A new velocity model for clay–sand mixtures. Geophys. Prospect., 43, 91–118.CrossRefGoogle Scholar
Yale, D. P. and Jameison, W. H., 1994. Static and dynamic rock mechanical properties in the Hugoton and Panoma fields. Kansas Society of Petroleum Engineers, Paper 27939. Society of Petroleum Engineers Mid-Continent Gas Symposium, Amarillo, TX, May.Google Scholar
Yamakawa, N., 1962. Scattering and attenuation of elastic waves. Geophys. Mag., Tokyo, 31, 63–103.Google Scholar
Yeganeh-Haeri, A., Weidner, D. J., and Ito, E., 1989. Single-crystal elastic moduli of magnesium metasilicate perovskite. In Perovskite: a Structure of Great Interest to Geophysics and Materials Science, Geophysics Monograph Series, vol. 45. Washington, D.C.: American Geophysical Union, pp. 13–25.Google Scholar
Yeganeh-Haeri, A., Weidner, D. J., and Parise, J. B., 1992. Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science, 257, 650–652.CrossRefGoogle ScholarPubMed
Yin, H., 1992. Acoustic Velocity and Attenuation of Rocks: Isotropy, Intrinsic Anisotropy, and Stress-Induced Anisotropy. Ph.D. dissertation, Stanford University.Google Scholar
Yoneda, A., 1990. Pressure derivatives of elastic constants of single crystal MgO, MgAl2O4. J. Phys. Earth, 38, 19–55.CrossRefGoogle Scholar
Yoon, H. S. and Newnham, R. E., 1969. Elastic properties of fluorapatite. Amer. Mineralog., 54, 1193–1197.Google Scholar
Yoon, H. S. and Newnham, R. E., 1973. The elastic properties of beryl. Acta Cryst., A29, 507–509.CrossRefGoogle Scholar
Young, H. D., 1962. Statistical Treatment of Experimental Data. New York: McGraw-Hill.Google Scholar
Yu, G., Vozoff, K., and Durney, W., 1993. The influence of confining pressure and water saturation on dynamic properties of some rare Permian coals. Geophys., 58, 30–38.CrossRefGoogle Scholar
Zamora, M. and Poirier, J. P., 1990. Experimental study of acoustic anisotropy and birefringence in dry and saturated Fontainebleau sandstone. Geophys., 55, 1455–1465.CrossRefGoogle Scholar
Zarembo, I. K. and Krasil'nikov, V. A., 1971. Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Usp., 13, 778–797.CrossRefGoogle Scholar
Zeller, R. and Dederichs, P. H., 1973. Elastic constants of polycrystals. Phys. Stat. Sol. b, 55, 831.CrossRefGoogle Scholar
Zener, C., 1948. Elasticity and Anelasticity of Metals. Chicago, IL: University of Chicago Press.Google Scholar
Zhao, Y. and Weidner, D. J., 1993. The single-crystal elastic moduli of neighborite. Phys. Chem. Minerals, 20, 419–424.CrossRefGoogle Scholar
Zimmerman, R. W., 1984. The elastic moduli of a solid with spherical pores: new self-consistent method. Int. J. Rock Mech., Mining Sci. Geomech. Abstracts, 21, 339–343.CrossRefGoogle Scholar
Zimmerman, R. W., 1986. Compressibility of two-dimensional cavities of various shapes. J. Appl. Mech. Trans. Am. Soc. Mech. Eng., 53, 500–504.CrossRefGoogle Scholar
Zimmerman, R. W., 1991a. Compressibility of Sandstones. New York: Elsevier.Google Scholar
Zimmerman, R. W., 1991b. Elastic moduli of a solid containing spherical inclusions. Mech. Mater., 12, 17–24.CrossRefGoogle Scholar
Zoback, M. D., 2007. Reservoir Geomechanics, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Zoeppritz, K., 1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves. Göttinger Nachr., I, 66–84.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gary Mavko, Stanford University, California, Tapan Mukerji, Stanford University, California, Jack Dvorkin, Stanford University, California
  • Book: The Rock Physics Handbook
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626753.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gary Mavko, Stanford University, California, Tapan Mukerji, Stanford University, California, Jack Dvorkin, Stanford University, California
  • Book: The Rock Physics Handbook
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626753.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gary Mavko, Stanford University, California, Tapan Mukerji, Stanford University, California, Jack Dvorkin, Stanford University, California
  • Book: The Rock Physics Handbook
  • Online publication: 19 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626753.012
Available formats
×