Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T07:53:25.599Z Has data issue: false hasContentIssue false

15 - The thermopower of metals and alloys

Published online by Cambridge University Press:  21 January 2010

J. S. Dugdale
Affiliation:
University of Leeds
Get access

Summary

Definitions

The origin of the thermoelectric effects is very simple. They arise because an electric current in a conductor carries not only charge but also heat. Consequently when an electric current flows through the junction of one conductor with another, although the charge flow is exactly matched, there is in general a mismatch in the associated heat flow; the difference is made manifest as the Peltier heat. If the current flows through a conductor in which there is a temperature gradient the heat shows up as the Thomson heat which is the heat that must be added to or subtracted from the conductor to maintain the temperature gradient unchanged; the electric current behaves as if it were a fluid with a heat capacity (either positive or negative). The third manifestation of thermoelectricity is the Seebeck effect which is the inverse of the other two. In this a heat current is established by means of a temperature gradient and this produces an electric current. However this cannot be done with a single material since in such a closed circuit the current induced in one part would cancel that in the other. Instead two materials are needed; moreover it is more convenient to measure not the circulating current that results but the emf that arises when the electrical circuit is broken. More explicitly, if conductor A is connected to conductor B at its two ends and the two junctions are maintained at different temperatures, an emf appears in the circuit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×