Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T05:11:02.907Z Has data issue: false hasContentIssue false

11 - Tsunami hazard assessment

Published online by Cambridge University Press:  27 May 2010

Charles B. Connor
Affiliation:
University of South Florida
Neil A. Chapman
Affiliation:
ITC School of Underground Waste Storage and Disposal, Switzerland
Laura J. Connor
Affiliation:
University of South Florida
Get access

Summary

No natural disaster in modern history has impacted a broader region, or impacted more lives in more diverse communities, than the 2004 Indian Ocean tsunami. For many, this disaster redefined the scale of conceivable impacts of natural disasters. The scales of natural processes that contributed to this disaster were equally tremendous, including the magnitude of the tsunamigenic earthquake, the largest on Earth since the Chilean earthquake of 1960; the volume of water displaced during the earthquake and the speed with which the resulting wave could traverse an entire ocean basin; and the force and extent of the wave runup where the tsunami reached coastal areas. Yet on geological timescales, such events are common.

We must prepare for such natural events. In the context of nuclear facilities, preparation involves understanding, or forecasting, the impact of potential tsunami on coastal sites (McKinley and Alexander, Chapter 22, this volume). This includes developing an understanding of the sources of tsunami, the propagation of tsunami waves, and their wave height, wavelength and runup. This chapter reviews tsunami processes, and introduces the concept of probabilistic tsunami hazard assessment, parallel to other types of hazard analysis already common for nuclear facilities.

What is a tsunami?

Tsunami comes from the Japanese word meaning “harbor wave.” In Japanese, the word tsunami is the same in both the singular and plural form. In English tsunamis is often used for the plural, although both tsunami and tsunamis are correct.Atsunami is a series of waves that are rapidly generated when a large volume of water (e.g. a lake, the sea, the ocean) is vertically displaced by an impulse disturbance such as an explosion, earthquake, volcanic eruption, landslide or meteorite impact.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×