Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T23:23:27.564Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

5 - Cardiac physiology

from Section 2 - Physiology

Tim Smith
Affiliation:
Alexandra Hospital, Redditch
Colin Pinnock
Affiliation:
Alexandra Hospital, Redditch
Ted Lin
Affiliation:
University of Leicester, NHS Trust
Robert Jones
Affiliation:
Withybush Hospital, Haverfordwest
Get access

Summary

The heart

The cardiovascular system acts as a transport system for the tissues and has the following functions:

  • Supply of oxygen and removal of CO2

  • Delivery of nutrients and removal of metabolic waste products

  • Delivery of hormones and vasoactive substances to target cells

The heart is the driving force behind this system, and can be considered a transducer that converts chemical energy into mechanical energy. It consists of a right-sided low-pressure pump and a left-sided high-pressure pump. Each of these pumps is composed of an atrium and a ventricle. The atria prime the ventricles, which in turn eject the cardiac output (CO) into either the pulmonary or the systemic circulation.

Cardiac muscle

Cardiac muscle is striated, the striations being due to the structure of the contractile intracellular myofibrils. The myofibrils are composed of sarcomere units which are identical to those of skeletal muscle, composed of thick and thin filaments arranged to give the characteristic Z line, A band and I band striations. The thick filaments are composed of myosin molecules, whose tails are linked to form the filament leaving the actin binding ‘heads’ of the molecules free. Each thick filament is surrounded by six thin filaments composed of a double spiral of actin molecules in combination with tropomyosin and troponin. These thin filaments form a hexagonal tube around the thick myosin filament.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×