Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T13:01:12.506Z Has data issue: false hasContentIssue false

10 - Performance Measurement Based on Usable Information

from Part Two - Information Theory and Artificial Networks

Published online by Cambridge University Press:  04 May 2010

Roland Baddeley
Affiliation:
University of Oxford
Peter Hancock
Affiliation:
University of Stirling
Peter Földiák
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Qualitative measures show that an existing artificial neural network can perform invariant object recognition. Quantification of the level of performance of cells within this network, however, is shown to be problematic.

In line with contemporary neurophysiological analyses (e.g. Optican and Richmond, 1987; Tovee et al., 1993), a simplistic form of Shannon's information theory was applied to this performance measurement task. However, the results obtained are shown not to be useful – the perfect reliability of artificial cell responses highlights the implicit decoding power of pure Shannon information theory.

Refinement of the definition of cell performance in terms of usable Shannon information (Shannon information which is available in a “useful” form) leads to the development of two novel performance measures. First, a cell's “information trajectory” quantifies standard information-theoretic performance across a range of decoders of increasing complexity – information made available using simple decoding is weighted more strongly than information only available using more complex decoding. Second, the nature of the application (the task the network attempts to solve) is used to design a decoder of appropriate complexity, leading to an exceptionally simple and reliable information-theoretic measure. Comparison of the various measures' performance in the original problem domain show the superiority of the second novel measure.

The chapter concludes with the observation that reliable application of Shannon's information theory requires close consideration of the form in which signals may be decoded – in short, not all measurable information may be usable information.

Introduction

This chapter discusses an approach to performance measurement using information theory in the context of a model of invariant object recognition. Each of these terms is discussed in turn in the following sections.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×