Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T14:23:55.740Z Has data issue: false hasContentIssue false

10 - Insects at not so low temperature: Climate change in the temperate zone and its biotic consequences

from PART II - ECOLOGICAL AND EVOLUTIONARY RESPONSES

Published online by Cambridge University Press:  04 May 2010

David L. Denlinger
Affiliation:
Ohio State University
Richard E. Lee, Jr
Affiliation:
Miami University
Get access

Summary

Introduction

Herein, we consider insects in the temperate zone where, in central and eastern continental land masses, favorable summers are interspersed with inamicable, often lethal, winters. At latitudes higher than 30°, fitness consists of the ability to exploit the warm season through growth, development and reproduction, the ability to avoid or mitigate the effects of winter cold through dormancy or migration, and the ability to make a timely transition between summer and winter lifestyles. Fitness is then defined by performance integrated through all four seasons, not just by a measure of performance in a single environment characteristic of a single time of year.

Below we discuss the geographical and seasonal patterns in light and temperature in the temperate zone, how climate change is affecting and will affect these patterns, and the actual and potential biotic responses by insects to climate warming. Physiological processes lie at the level of integration between the environment and the gene, and are important in regulating the acquisition, assimilation and allocation of resources, in regulating growth, development and reproduction, and in maintaining homeostasis in variable environments. Environmental change elicits a physiological response, either through non-genetic change within individual animals (homeostasis and phenotypic plasticity) or through genetic change in animal populations (evolution). Mechanism matters. Physiological processes enable animals to maximize survivorship and reproduction, and are primary determinants of fitness in environments that vary in time and space.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society, Series B 267, 739–745.CrossRefGoogle ScholarPubMed
Andrewartha, H. G. (1952). Diapause in relation to the ecology of insects. Biological Reviews 27, 50–107.CrossRefGoogle Scholar
Ansart, A., Vernon, P. and Daguzan, J. (2001). Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Cryobiology 42, 266–273.CrossRefGoogle Scholar
Armbruster, P. A., Bradshaw, W. E. and Holzapfel, C. M. (1998). Effects of postglacial range expansion on allozyme and quantitative genetic variation in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 52, 1697–1704.CrossRefGoogle ScholarPubMed
Ayala, F. J., Serra, L. L. and Prevosti, A. (1989). A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31, 246–255.CrossRefGoogle Scholar
Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. and Serra, L. (2006). Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775.CrossRefGoogle ScholarPubMed
Baudry, E., Viginier, B. and Veuille, M. (2004). Non-African populations of Drosophila melanogaster have a unique origin. Molecular Biology and Evolution 21, 1482–1491.CrossRefGoogle ScholarPubMed
Bellemin, J., Adest, G. and Gorman, G. C. (1978). Genetic uniformity in northern populations of Thamnophis sirtalis (Serpentes: Colubridae). Copeia 1978, 150–151.CrossRefGoogle Scholar
Benfey, P. N. and Mitchell-Olds, T. (2008). From genotype to phenotype: systems biology meets natural variation. Science 320, 495–497.CrossRefGoogle ScholarPubMed
Bergland, A. O., Agotsch, M., Mathias, D., Bradshaw, W. E. and Holzapfel, C. M. (2005). Factors influencing the seasonal life history of the pitcher-plant mosquito, Wyeomyia smithii. Ecological Entomology 30, 129–137.CrossRefGoogle Scholar
Biro, P. A., Post, J. R. and Booth, D. J. (2007). Mechanisms for climate-induced mortality of fish populations in whole-lake experiments. Proceedings of the National Academy of Sciences, USA 104, 9715–9719.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. (1973). Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54, 1247–1259.CrossRefGoogle Scholar
Bradshaw, W. E. (1976). Geography of photoperiodic response in a diapausing mosquito. Nature 262, 384–386.CrossRefGoogle Scholar
Bradshaw, W. E., Fujiyama, S. and Holzapfel, C. M. (2000). Adaptation to the thermal climate of North America by the pitcher-plant mosquito, Wyeomyia smithii. Ecology 81, 1262–1272.CrossRefGoogle Scholar
Bradshaw, W. E., Haggerty, B. P. and Holzapfel, C. M. (2005). Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169, 485–488.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (1977). Interaction between photoperiod, temperature, and chilling in dormant larvae of the tree-hole mosquito, Toxorhynchites rutilus Coq. Biological Bulletin 152, 147–158.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (2001a). Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences, USA 98, 14509–14511.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (2001b). Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. Journal of Insect Physiology 47, 809–820.CrossRefGoogle Scholar
Bradshaw, W. E. and Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 1477–1478.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (2007). Tantalizing timeless. Science 316, 1851–1852.CrossRefGoogle ScholarPubMed
Bradshaw, W. E. and Holzapfel, C. M. (2008). Genetic response to rapid climate change: it's seasonal timing that matters. Molecular Ecology 17, 157–166.CrossRefGoogle ScholarPubMed
Bradshaw, W. E., Holzapfel, C. M. and Mathias, D. (2006). Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock?The American Naturalist 167, 601–605.Google ScholarPubMed
Bradshaw, W. E., Quebodeaux, M. C. and Holzapfel, C. M. (2003). Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment?The American Naturalist 161, 735–748.CrossRefGoogle ScholarPubMed
Bradshaw, W. E., Zani, P. A. and Holzapfel, C. M. (2004). Adaptation to temperate climates. Evolution 58, 1748–1762.CrossRefGoogle ScholarPubMed
Bromage, N., Porter, M. and Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197, 63–98.CrossRefGoogle Scholar
Bünning, E. (1936). Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Beriche der Deutschen botanischen Gesellschaft 54, 590–607.Google Scholar
Campbell, M. D. and Bradshaw, W. E. (1992). Genetic coordination of diapause in the pitcherplant mosquito, Wyeomyia smithii (Diptera: Culicidae). Annals of the Entomological Society of America 85, 445–451.CrossRefGoogle Scholar
Ceriani, M. F., Hogenesch, J. B., Yanovsky, M., Panda, S., Straume, M. and Kay, S. A. (2002). Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. The Journal of Neuroscience 22, 9305–9319.CrossRefGoogle ScholarPubMed
Claridge-Chang, A., Wijnen, H., Nacef, F., Boothroyd, C., Rajewsky, N. and Young, M. W. (2001). Circadian regulation of gene expression systems in the Drosophila head. Neuron 37, 657–671.CrossRefGoogle Scholar
Clausen, J., Keck, D. D., and Hiesey, W. M. (1940). Experimental Studies on the Nature of Species. 1. Effect of Varied Environments on Western North American Plants. Washington, DC: Carnegie Institute of Washington.Google Scholar
Critchfield, H. J. (1974). General Climatology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Cuellar, H. S. and Cuellar, O. (1977). Evidence for endogenous rhythmicity in the reproductive cycle of the parthenogenetic lizard Cnemidophorus uniparens (Reptilia: Teiidae). Copeia 1977, 554–557.CrossRefGoogle Scholar
Cwynar, L. C. and MacDonald, G. M. (1987). Geographical variation in lodgepole pine in relation to population history. The American Naturalist 129, 463–469.CrossRefGoogle Scholar
Danilevskii, A. S. (1965). Photoperiodism and Seasonal Development in Insects. Edinburgh: Oliver and Boyd.Google Scholar
Danks, H. V. (1987). Insect Dormancy: an Ecological Perspective. Ottawa: Biological Survey of Canada (Terrestrial Arthropods).Google Scholar
Danks, H. V. (2005). How similar are daily and seasonal biological clocks?Journal of Insect Physiology 51, 609–619.CrossRefGoogle ScholarPubMed
David, J. R. and Capy, P. (1988). Genetic variation of Drosophila melanogaster natural popualtions. Trends in Genetics 4, 106–111.CrossRefGoogle Scholar
Dawson, A. (2002). Photoperiodic control of the annual cycle in birds and comparison with mammals. Ardea 90, 355–367.Google Scholar
Dawson, A., King, V. M., Bentley, G. E. and Ball, G. F. (2001). Photoperiodic control of seasonality in birds. Journal of Biological Rhythms 16, 365–380.CrossRefGoogle ScholarPubMed
Denlinger, D. L. (1986). Dormancy in tropical insects. Annual Review of Entomology 31, 239–264.CrossRefGoogle ScholarPubMed
Deutsch, C. A., Tewksbury, J. L., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105, 6668–6672.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1948). Genetics of natural populations. XVI. Altitudinal and seasonal changes produced by natural selection in certain populations of Drosophila pseudoobscura and Drosophila persimilis. Genetics 33, 158–176.Google Scholar
Duffield, G. E. (2003). DNA microarray analyses of circadian timing: the genomic basis of biological time. Journal of Neuroendocrinology 15, 991–1002.CrossRefGoogle ScholarPubMed
Etterson, J. R. and Shaw, R. G. (2001). Constraint to adaptive evolution in response to global warming. Science 294, 151–154.CrossRefGoogle ScholarPubMed
Emerson, K. J., Dake, S. J., Bradshaw, W. E. and Holzapfel, C. M. (2009a). Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Comparative PhysiologyA 195, 385–391.CrossRefGoogle ScholarPubMed
Emerson, K. J., Bradshaw, W. E. and Holzapfel, C. M. (2009b). Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics 25, 217–225.CrossRefGoogle ScholarPubMed
Fenster, C. B. and Galloway, L. F. (2000). Population differentiation in an annual legume: genetic architecture. Evolution 54, 1157–1172.CrossRefGoogle Scholar
Fochs, D. A., Linda, S. B., CraigJr., G. B., Hawley, W. A. and Pumpuni, C. B. (1994). Aedes albopictus (Diptera: Culicidae): a statistical model of the role of temperature, photoperiod, and geography in the induction of egg diapause. Journal of Medical Entomology 31, 278–286.CrossRefGoogle Scholar
Fong, P. P. and Pearse, J. S. (1992). Evidence for a programmed circannual life cycle modulated by increasing daylengths in Neanthes limnicola (Polychaeta: Nereidae) from central California. Biological Bulletin 182, 289–297.CrossRefGoogle ScholarPubMed
Forister, M. L. and Shapiro, A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology 9, 1130–1135.CrossRefGoogle Scholar
Fox, W. and Dessauer, H. C. (1957). Photoperiodic stimulation of appetite and growth in the male lizard, Anolis carolinensis. Journal of Experimental Zoology 134, 557–575.CrossRefGoogle ScholarPubMed
Franks, S. J., Sim, S. and Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to climate fluctuation. Proceedings of the National Academy of Sciences, USA 104, 1278–1282.CrossRefGoogle ScholarPubMed
Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. The American Naturalist 168, 512–520.CrossRefGoogle Scholar
Goldman, B. D. (2001). Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. Journal of Biological Rhythms 16, 283–301.CrossRefGoogle ScholarPubMed
Gomi, T., Nagasaka, M., Fukuda, T. and Hagihara, H. (2007). Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomologia Experimentalis et Applicata 125, 179–184.CrossRefGoogle Scholar
Goto, S. G. and Denlinger, D. L. (2002). Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. Journal of Insect Physiology 48, 803–816.CrossRefGoogle ScholarPubMed
Goto, S. G., Han, B. and Denlinger, D. L. (2006). A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. Journal of Insect Physiology 52, 1213–1218.CrossRefGoogle ScholarPubMed
Green, D. M., Sharbel, T. F., Kearsley, J. and Kaiser, H. (1996). Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex, Rana pretiosa. Evolution 50, 374–390.CrossRefGoogle Scholar
Halberg, F., Shankaraiah, K., Giese, A. C. and Halberg, F. (1987). The chronobiology of marine invertebrates: Methods of analysis. In Reproduction of Marine Invertebrates, ed. Giese, A. C., Pearse, J. S. and Pearse, V. B.. Palo Alto, CA: Blackwell. pp. 331–384.Google Scholar
Hard, J. J., Bradshaw, W. E. and Holzapfel, C. M. (1993a). The genetic basis of photoperiodism and evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. The American Naturalist 142, 457–473.CrossRefGoogle ScholarPubMed
Hard, J. J., Bradshaw, W. E. and Holzapfel, C. M. (1993b). Genetic coordination of demography and phenology in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Evolutionary Biology 6, 707–723.CrossRefGoogle Scholar
Helmuth, B., Kingsolver, J. G. and Carrington, E. (2005). Biophysics, physiological ecology, and climate change: Does mechanism matter?Annual Review of Physiology 67, 177–201.CrossRefGoogle ScholarPubMed
Highton, R. and Webster, T. P. (1976). Geographic protein variation and divergence in populations of the salamander Plethodon cinereus. Evolution 30, 33–45.CrossRefGoogle ScholarPubMed
Hofman, M. A. (2004). The brain's calendar: neural mechanisms of seasonal timing. Biological Reviews 79, 61–77.CrossRefGoogle ScholarPubMed
Hommay, G., Kienlen, J. C., Gertz, C. and Hill, A. (2001). Growth and reproduction of the slug Limax ventianus Férussac in experimental conditions. Journal of Molluscan Studies 67, 191–207.CrossRefGoogle Scholar
Hoy, M. A. (1978). Variability in diapause attributes of insects and mites: some evolutionary and practical implications. In Evolution of Insect Migration and Diapause, ed. , H. Dingle.New York, NY.: Springer-Verlag. pp. 101–126.CrossRefGoogle Scholar
Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent?Trends in Ecology and Evolution 15, 56–61.CrossRefGoogle ScholarPubMed
,IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
,IPCC (2007). Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC Secretariat.Google Scholar
Istock, C. A., Zisfein, J. and Vavra, K. J. (1976). Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness. Evolution 30, 535–547.CrossRefGoogle Scholar
Joosse, J. (1984). Photoperiodicity, rhythmicity and endocrinology of reproduction in the snail Lymnaea stagnalis. In Photoperiodic Regulation of Insect and Molluscan Hormones, ed. Porter, R. and Collins, G. M.. London: Pitman. pp. 204–220.Google Scholar
Kemp, A. (1984). Spawning of the Australian lungfish, Neoceratodus fosteri (Krefft) in the Brisbane River and Enoggera Reservoir, Queensland. Memoirs of the Queensland Museum 21, 391–399.Google Scholar
Koštál, V. (2006). Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113–127.CrossRefGoogle ScholarPubMed
Lachaise, D. and Silvain, J.-F. (2004). How two Afrotrpoical endemics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120, 17–39.CrossRefGoogle ScholarPubMed
Lachaise, G., Cariou, M. L. D. J. R., Lemeunier, F., Tsacas, L. and Ashburner, M. (1988). Historical biogeography of the Drosophila melanogaster species subgroup. Evolutionary Biology 22, 159–225.CrossRefGoogle Scholar
Lair, K. P., Bradshaw, W. E. and Holzapfel, C. M. (1997). Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147, 1873–1883.Google ScholarPubMed
Lankinen, P. (1986a). Genetic correlation between circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis. Journal of Biological Rhythms 1, 101–118.CrossRefGoogle ScholarPubMed
Lankinen, P. (1986b). Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. Journal of Comparative Physiology A 159, 123–142.CrossRefGoogle Scholar
Lankinen, P. and Forsman, P. (2006). Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Journal of Biological Rhythms 21, 3–12.CrossRefGoogle ScholarPubMed
Last, K. S. and Olive, P. J. W. (1999). Photoperiodic control of growth and segment proliferation by Nereis (Neanthes) virens in relation to state of maturity and season. Marine Biology 134, 191–199.CrossRefGoogle Scholar
Last, K. S. and Olive, P. J. W. (2004). Interaction between photoperiod and an endogenous seasonal factor influencing the diel locomotor activity of the benthic polychaete Nereis virens Sars. Biological Bulletin 206, 103–112.CrossRefGoogle ScholarPubMed
Laurila, A.Pakkasmaa, S. M. J. and Merilä, J. (2001). Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos 95, 451–460.CrossRefGoogle Scholar
Leather, S. R., Walters, K. F. A. and Bale, J. S. (1993). The Ecology of Insect Overwintering. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lees, A. D. (1955). Physiology of Diapause in Arthropods. Cambridge, UK: Cambridge at the University Press.Google Scholar
Levitan, M. (2003). Climatic factors and increased frequencies of ‘southern’ chromosome forms in natural populations of Drosophila robusta. Evolutionary Ecology Research 5, 597–604.Google Scholar
Levitan, M. and Etges, W. J. (2005). Climate change and recent genetic flux in populations of Drosophila robusta. BMC Evolutionary Biology 5, 4.CrossRefGoogle ScholarPubMed
Licht, P. (1973). Influence of temperature and photoperiod on the annual ovarian cycle in the lizard Anolis carolinensis. Copeia 1973, 465–472.CrossRefGoogle Scholar
Lounibos, L. P., Escher, R. L. and Lorenço-De-Oliveira, R. (2003). Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96, 512–518.CrossRefGoogle Scholar
MacArthur, R. H. 1972. Geographical Ecology. New York, NY: Harper & Row.Google Scholar
Mathias, D., Jacky, L., Bradshaw, W. E. and Holzapfel, C. M. (2005). Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Insect Physiology 51, 661–667.CrossRefGoogle ScholarPubMed
Mathias, D., Jacky, L., Bradshaw, W. E. and Holzapfel, C. M. (2007). Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176, 391–402.CrossRefGoogle ScholarPubMed
McDonald, M. J. and Rosbash, M. (2001). Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578.CrossRefGoogle ScholarPubMed
Menaker, M. (1971). Biochronometry. Washington, DC: National Academy of Sciences.Google Scholar
Norris, M. J. (1965). The influence of constant and changing photoperiods on imaginal diapause in the red locus (Nomadacris septemfasciata Serv.). Journal of Insect Physiology 11, 1105–1119.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37, 637–669.CrossRefGoogle Scholar
Parmesan, C. (2007). Influences of species, latitudes and methodologies in estimates of phenological response to global warming. Global Change Biology 13, 1860–1872.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.CrossRefGoogle ScholarPubMed
Pearse, J. S., Eernisse, D. J., Pearse, V. B. and Beauchamp, K. A. (1986). Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. American Zoologist 26, 417–431.CrossRefGoogle Scholar
Peñuelas, J. and Filella, I. (2001). Response to a warming world. Science 294, 793–795.CrossRefGoogle Scholar
Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia in Quantitative Biology 25, 159–184.CrossRefGoogle ScholarPubMed
Pittendrigh, C. S. (1981). Circadian organization and the photoperiodic phenomena. In Biological Clocks in Seasonal Reproductive Cycles, ed. Follett, B. K. and Follett, D. E.. Bristol, UK: John Wright. pp. 1–35.Google Scholar
Pittendrigh, C. S. and Takamura, T. (1993). Homage to Sinzo Masaki: Circadian components in the photoperiodic responses of Drosophila auraria. In Seasonal Adaptation and Diapause in Insects (in Japanese), ed. Takeda, M. and Tanaka, S.. Tokyo: Bun-ichi Sôgô Shuppan. pp. 288–305.Google Scholar
Pourriot, R. and Clément, P. (1975). Influence de la durée de l'éclairement quotidien sur le taux de femelles mictiques chez Notommata copeus Ehr. (Rotifère). Oecologia (Berlin) 22, 67–77.CrossRefGoogle Scholar
Prevosti, A., Ribo, G., Serra, L., Aguade, M., Balanyá, J., Monclus, M. and Mestres, F. (1988). Colonization of America by Drosophila subobscura: Experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proceedings of the National Academy of Sciences, USA 85, 5597–5600.CrossRefGoogle ScholarPubMed
Rodríguez-Trelles, F. and Rodríguez, Á. (2007). Comment on “Global genetic change tracks global climate warming in Drosophila subobscura”. Science 315, 1497a.CrossRefGoogle Scholar
Rodríguez-Trelles, F. and Rodríguez, M. A. (1998). Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to global warming. Evolutionary Ecology 12, 829–838.CrossRefGoogle Scholar
Roff, D. (1992). The Evolution of Life Histories. New York: Chapman & Hall.Google Scholar
Roff, D. (2002). Life History Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. and Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.CrossRefGoogle ScholarPubMed
Rose, M. R. (1991). Evolutionary Biology of Aging. New York: Oxford University Press.Google Scholar
Roy, D. B. and Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology 6, 407–416.CrossRefGoogle Scholar
Sandrelli, F., Tauber, E., Pegoraro, M., Mazzotta, G., Cisotto, P., Landskrom, J., Stanewsky, R., Piccin, A., Rosato, E., Zordan, M., Costa, R. and Kyriacou, C. P. (2007). A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898–1900.CrossRefGoogle ScholarPubMed
Saunders, D. S. (1990). The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement?Journal of Biological Rhythms 5, 315–331.CrossRefGoogle ScholarPubMed
Saunders, D. S. (2002). Insect Clocks. Amsterdam: Elsevier.Google Scholar
Saunders, D. S. and Gilbert, L. I. (1990). Regulation of ovarian diapause in Drosophila melanogaster by photoperiod and moderately low temperature. Journal of Insect Physiology 36, 195–200.CrossRefGoogle Scholar
Saunders, D. S., Henrich, V. C. and Gilbert, L. I. (1989). Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutants on time measurement. Proceedings of the National Academy of Sciences, USA 86, 3748–3752.CrossRefGoogle Scholar
Schierwater, B. and Hauenschild, C. (1990). A photoperiod determined life-cycle in an oligochate worm. Biological Bulletin 178, 111–117.CrossRefGoogle Scholar
Schmidt, P. S., Matzkin, L. M., Ippolito, M. and Eanes, W. F. (2005). Geographic variation in diapause incidence, life history traits and climatic adaptation in Drosophila melanogaster. Evolution 59, 1721–1732.CrossRefGoogle ScholarPubMed
Schwaegerle, K. E. and Schaal, B. A. (1979). Genetic variability and founder effect in the pitcher plant Sarracenia purpurea L. Evolution 33, 1210–1218.CrossRefGoogle ScholarPubMed
Schwartz, M. D., Ahas, R. and Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12, 343–351.CrossRefGoogle Scholar
Stearns, S. C. (1976). Life history tactics: A review of the ideas. Quarterly Review of Biology 51, 3–47.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford, UK: Oxford University Press.Google Scholar
Stehlík, J., Závodská, S. K., Šauman, I. and Koštál, V. (2008). Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. Journal of Biological Rhythms 23, 129–139.CrossRefGoogle ScholarPubMed
Stinchcombe, J. R. and Hoekstra, H. E. (2008). Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100, 158–170.CrossRefGoogle ScholarPubMed
Stone, G. N. and Sunnuck, P. (1993). Genetic consequences of an invasion through a patchy environment – the cynipid gallwasp Andrecus quercuscalicis. Molecular Ecology 2, 251–268.CrossRefGoogle Scholar
Takeda, M. and Skopik, S. D. (1997). Photoperiodic time measurement and related physiological mechanisms in insects and mites. Annual Review of Entomology 42, 323–349.CrossRefGoogle ScholarPubMed
Tatar, M., Chien, S. A. and Priest, N. K. (2001). Negligible senescence during reproductive dormancy in Drosophila melanogaster. The American Naturalist 158, 248–258.CrossRefGoogle ScholarPubMed
Tauber, E. and Kyriacou, C. P. (2001). Insect photoperiodism and circadian clocks: models and mechanisms. Journal of Biological Rhythms 16, 381–390.CrossRefGoogle ScholarPubMed
Tauber, E. and Kyriacou, C. P. (2008). Genomic approaches for studying biological clocks. Functional Ecology 22, 19–29.Google Scholar
Tauber, E., Zordan, M., Sandrelli, F., Pegoraro, M., Osterwalder, N., Breda, C., Daga, A., Selmin, A., Monger, K., Benna, C., Rosato, E., Kyriacou, C. P. and Costa, R. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895–1898.CrossRefGoogle Scholar
Tauber, M. J., Tauber, C. A. and Masaki, S. (1986). Seasonal Adaptations of Insects. New York, NY: Oxford University Press.Google Scholar
Taylor, F. (1980). Optimal switching to diapause in relation to the onset of winter. Theoretical Population Biology 18, 125–133.CrossRefGoogle ScholarPubMed
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. and Hoffmann, A. A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693.CrossRefGoogle Scholar
Vaz Nunes, M. and Saunders, D. (1999). Photoperiodic time measurement in insects: a review of clock models. Journal of Biological Rhythms 14, 84–104.CrossRefGoogle ScholarPubMed
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological response to recent climate change. Nature 416, 389–395.CrossRefGoogle Scholar
Warren, R. (2006). Impacts of global climate change at different annual mean global temperature increases. In Avoiding Dangerous Climate Change, ed. Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. and Yohe, G.. Cambridge, UK: Cambridge University Press. pp. 93–131.Google Scholar
Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475–482.CrossRefGoogle Scholar
Withrow, R. B. (1959). Photoperiodism and Related Phenomena in Plants and Animals. Washington, DC: American Association for the Advancement of Science.Google Scholar
Wolda, H. and Denlinger, D. L. (1984). Diapause in a large aggregation of a tropical beetle. Ecological Entomology 9, 217–230.CrossRefGoogle Scholar
Zani, P., Swanson, S. E. T., Corbin, D., Cohnstaedt, L. W., Agotsh, M. D., Bradshaw, W. E. and Holzapfel, C. M. (2005). Geographic variation in tolerance of transient thermal stress in the mosquito Wyeomyia smithii. Ecology 86, 1206–1211.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×