Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-15T03:08:54.739Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  04 August 2010

Alisa Bokulich
Affiliation:
Boston University
Gregg Jaeger
Affiliation:
Boston University
Get access

Summary

Entanglement can be understood as an extraordinary degree of correlation between states of quantum systems – a correlation that cannot be given an explanation in terms of something like a common cause. Entanglement can occur between two or more quantum systems, and the most interesting case is when these correlations occur between systems that are space-like separated, meaning that changes made to one system are immediately correlated with changes in a distant system even though there is no time for a signal to travel between them. In this case one says that quantum entanglement leads to non-local correlations, or non-locality.

More precisely, entanglement can be defined in the following way. Consider two particles, A and B, whose (pure) states can be represented by the state vectors ψA and ψB. Instead of representing the state of each particle individually, one can represent the composite two-particle system by another wavefunction, ΨAB. If the two particles are unentangled, then the composite state is just the tensor product of the states of the components: ΨAB = ψA ⊗ ψB; the state is then said to be factorable (or separable). If the particles are entangled, however, then the state of the composite system cannot be written as such a product of a definite state for A and a definite state for B. This is how an entangled state is defined for pure states: a state is entangled if and only if it cannot be factored: ΨAB ≠ ψA ⊗ ψB.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Edited by Alisa Bokulich, Boston University, Gregg Jaeger, Boston University
  • Book: Philosophy of Quantum Information and Entanglement
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511676550.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Edited by Alisa Bokulich, Boston University, Gregg Jaeger, Boston University
  • Book: Philosophy of Quantum Information and Entanglement
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511676550.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Edited by Alisa Bokulich, Boston University, Gregg Jaeger, Boston University
  • Book: Philosophy of Quantum Information and Entanglement
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511676550.002
Available formats
×