Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-15T15:38:43.233Z Has data issue: false hasContentIssue false

1 - Reflections on the origins of the human brain

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

Human beings belong to the biological species Homo sapiens. The definition of the species includes the description of the characteristic anatomy and physiology of the body, as well as of the functional organization of the brain together with the multiple facets of behaviors unique to human beings. The human brain is obviously a fascinating object of scientific investigation.

The aim of this chapter is to debate the origins of the human brain. This raises an overwhelming challenge. First of all, one should attempt to delineate what makes the human brain “human,” even in the newborn, and to identify the features that distinguish it from the current living primates and from its fossil antecedents. It is intriguing, on the one hand, to find ways of specifying the universal traits of “human nature” in objective terms. On the other hand, the broad diversity between individuals, in particular as a consequence of their past and recent personal and/or cultural history, raises a second challenge. Does such diversity break the unity of the human brain within the human species?

A tension thus exists in neuroscience, as well as in the humanities, between two main lines of research: one that aims at defining the universal characteristics of the human species, for instance at the level of the infant brain, and the other that stresses the variability of cognitive abilities in adults, such as the language they speak and the social conventions they adopt.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, F. & Garcia, R. (1997). The evolutionary origin of the language areas in the human brain. A neuroanatomical, perspective. Brain Research Reviews, 25, 381–96.CrossRefGoogle Scholar
Altiok, N., Altiok, S., & Changeux, J.-P. (1997). Heregulin-stimulated acetylcholine receptor gene expression in muscle: requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. EMBO Journal, 16, 717–25.CrossRefGoogle ScholarPubMed
Arendt, D. & Nübler-Jung, K. (1997). Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mechanisms of Development, 61, 7–21.CrossRefGoogle ScholarPubMed
Azevedo, F., Carvalho, L., Grinberg, L. T., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 10, 532–41.CrossRefGoogle Scholar
Baars, B. J. (1989). Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.Google Scholar
Barde, Y. A. (1990). The nerve growth factor family. Progress in Growth Factor Research, 2, 237–48.CrossRefGoogle ScholarPubMed
Benoit, P. & Changeux, J.-P. (1975). Consequences of tenotomy on the evolution of multiinnervation on developing rat soleus muscle. Brain Research, 99, 354–8.CrossRefGoogle ScholarPubMed
Benoit, P. & Changeux, J.-P. (1978). Consequences of blocking the nerve with a local anaesthetic on the evolution of multiinnervation at the regenerating neuromuscular-junction of the rat. Brain Research, 149, 89–96.CrossRefGoogle ScholarPubMed
Berthoz, A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 352, 1437–48.CrossRefGoogle ScholarPubMed
Betz, H. (1998). Gephyrin a major player in GABAergic postsynaptic membrane assembly. Nature Neuroscience, 1, 541–3.CrossRefGoogle Scholar
Bishop, D., Misgeld, T., Walsh, M., et al. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron, 44, 651–61.CrossRefGoogle ScholarPubMed
Bishop, K. M., Goudreau, G., & O'Leary, D. D. (2000). Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science, 288, 344–9.CrossRefGoogle ScholarPubMed
Bond, J. & Woods, C. G. (2006). Cytoskeletal genes regulating brain size. Current Opinion in Cell Biology, 18, 95–101.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (2000). Formation, elimination and stabilization of synapses in the primate cerebral cortex. In The Cognitive Neurosciences, ed. Gazzarriga, M.. Cambridge, MA: MIT Press.Google Scholar
Cabelli, R. J., Hohn, A., & Shatz, C. J. (1995). Inhibition of ocular dominance column formation by infusion of NT4/5 or BDNF. Science, 267, 1662.CrossRefGoogle ScholarPubMed
Calarco, J. A., Xing, Y., Cáceres, M., et al. (2007). Global analysis of alternative splicing differences between humans and chimpanzees. Genes and Development, 21, 2963–75.CrossRefGoogle ScholarPubMed
Carmeliet, P. & Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.CrossRefGoogle ScholarPubMed
Carmignoto, G., Canella, R., Candeo, P., et al. (1993). Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. Journal of Physiology, 464, 343–60.CrossRefGoogle ScholarPubMed
Carroll, S. B. (2003). Genetics and the making of Homo sapiens. Nature, 422, 849–57.CrossRefGoogle ScholarPubMed
Castro Caldas, A., Petersson, K. M., Reis, A., et al. (1998). The illiterate brain: learning to write and read during childhood influences the functional organization of the adult brain. Brain, 121, 1053–63.CrossRefGoogle ScholarPubMed
Cellerino, A. & Maffei, L. (1996). The action of neurotrophins in the development and plasticity of the visual cortex. Progress in Neurobiology, 49, 53–63.CrossRefGoogle ScholarPubMed
Changeux, J.-P. (1983a). Concluding remarks on the “singularity” of nerve cells and its ontogenesis. Progress in Brain Research, 58, 465–78.CrossRefGoogle ScholarPubMed
Changeux, J.-P. (1983b). L'Homme Neuronal. Fayard: Paris. [English translation: Neuronal Man, 1985. New Jersey: Princeton University Press.]Google Scholar
Changeux, J.-P. (1985). Genetic determinism and epigenesis of neuronal network: is there a biological compromise between Chomsky and Piaget? In Language and Learning: The Debate Between Jean Piaget and Noam Chomsky, ed. Piattelli-Palmarini, M.. Cambridge, MA: Harvard University Press, pp. 184–202.Google Scholar
Changeux, J.-P. (1994). Raison et Plaisir. Paris: Odile Jacob.Google Scholar
Changeux, J.-P. (1998). Drug and abuse. Journal of the American Academy of Arts and Sciences, Daedalus, 127, 145–65.Google Scholar
Changeux, J.-P. (2004). The Physiology of Truth: Neuroscience and Human Knowledge. Cambridge, MA: Harvard University Press.Google Scholar
Changeux, J.-P. & Connes, A. (1989). Matière à Pensée. Paris: Odile Jacob. [English translation: Conversations on Mind, Matter and Mathematics, 1991. New Jersey: Princeton University Press.]Google Scholar
Changeux, J.-P. & Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–12.CrossRefGoogle Scholar
Changeux, J.-P. & Dehaene, S. (2008). The neuronal workspace model: conscious processing and learning. In Learning and Memory: A Comprehensive Reference, ed. Menzel, R.. London: Elsevier, pp. 1–29.Google Scholar
Changeux, J.-P. & Edelstein, S. (1998). Allosteric receptor after 30 years. Neuron, 21, 959–80.CrossRefGoogle Scholar
Changeux, J.-P. & Edelstein, S. (2005). Nicotinic Acetylcholine Receptors. New York: Odile Jacob.Google Scholar
Changeux, J.-P. & Mikoshiba, K. (1978). Genetic and epigenetic factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. In Maturation of the Nervous System, eds. Comer, M. A., Baker, R. E., Poll, N. E., et al. Progress in Brain Research, 48, 43–64.CrossRef
Changeux, J.-P. & Ricoeur, P. (1998). La Nature et la Règle. Paris: Odile Jacob.Google Scholar
Changeux, J.-P., Courrège, P. & Danchin, A. (1973). A theory of the epigenesis of neural networks by selective stabilization of synapses. Proceedings of the National Academy of Sciences of the U S A, 70, 2974–8.CrossRefGoogle Scholar
Chervitz, S. A., Aravind, L., Sherlock, G., et al. (1998). Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science, 282, 2022–8.CrossRefGoogle ScholarPubMed
Crépel, F. (1982). Regression of functional synapses in the immature mammalian cerebellum. Trends in Neuroscience, 5, 266–9.CrossRefGoogle Scholar
Deacon, T. (1997). The Symbolic Species. New York: W.W. Norton & Co.Google Scholar
Boysson-Bardies, B. (1998). Comment la Parole Vient aux Enfants. Paris: Odile Jacob.Google Scholar
Dehaene, S. (2007). Les Neurones de la Lecture. Paris: Odile Jacob.Google Scholar
Dehaene, S. & Changeux, J.-P. (1989). A simple model of prefrontal cortex function in delayed-response tasks. Journal of Cognitive Neuroscience, 1, 244–61.CrossRefGoogle ScholarPubMed
Dehaene, S. & Changeux, J.-P. (1991). The Wisconsin card sorting test: theoretical analysis and simulation of a reasoning task in a model neuronal network. Cerebral Cortex, 1, 62–79.CrossRefGoogle Scholar
Dehaene, S. & Changeux, J.-P. (1997). A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Sciences of the U S A, 94, 13293–8.CrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–98.CrossRefGoogle ScholarPubMed
Dehaene, S., Dupoux, E., Mehler, J., et al. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 17, 3775–8.Google Scholar
Dehaene, S., Kerszberg, M. & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the U S A, 95, 14529–34.CrossRefGoogle ScholarPubMed
Kerchove d'Exaerde, A., Cartaud, J., Ravel-Chapuis, A., et al. (2002). Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Reports, 3, 1075–81.CrossRefGoogle ScholarPubMed
Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biology, 5, e260.CrossRefGoogle ScholarPubMed
Vignemont, F. & Singer, T. (2006). The empathic brain: how, when and why?Trends in Cognitive Science, 10, 435–41.CrossRefGoogle Scholar
Diamond, J. (1991). Neurophysical insights into the meaning of object concept development. In The Epigenesis of Mind: Essays on Biology and Cognition, eds. Carey, S. & Gelman, R.. Hillsdale, NJ: Erlbaum Associates, pp. 67–110.Google Scholar
Drescher, U., Bonhoeffer, F., & Muller, B. K. (1997). The Eph family in retinal axon guidance. Current Opinion in Neurobiology, 7, 75–80.CrossRefGoogle ScholarPubMed
Duclert, A. & Changeux, J.-P. (1995). Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiological Reviews, 75, 339–68.CrossRefGoogle ScholarPubMed
Ebersberger, I., Galgoczy, P., Taudien, S., et al. (2007). Mapping human genetic ancestry. Molecular Biology Evolution, 24, 2266–76.CrossRefGoogle ScholarPubMed
Eckert, M., Leonard, C., Molloy, E., et al. (2002). The epigenesis of planum temporale asymmetry in twins. Cerebral Cortex, 12, 749–55.CrossRefGoogle ScholarPubMed
Edelman, G. (1978). The Mindful Brain: Cortical Organization and the Group-selective Theory of Higher Brain Function. Cambridge MA: MIT Press.Google Scholar
Edelman, G. (1987). Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
Edelman, G. (1998). Building a picture of the brain. Journal of the American Academy of Arts and Science, The Brain, 127, 37–69.Google Scholar
Edelman, G. & Tononi, G. (2000). A Universe of Consciousness: How Matter Becomes Imagination. New York: Basic Books.Google Scholar
Elliott, T. & Shadbolt, N. R. (1998). Competition for neurotrophic factors: mathematical analysis. Neural Computation, 10, 1939–81.CrossRefGoogle ScholarPubMed
Enard, W., Przeworski, M., Fisher, S. E., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–72.CrossRefGoogle ScholarPubMed
Enard, W., Gehre, S., Hammerschmidt, K., et al. (2009). A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell, 137, 961–71.CrossRefGoogle ScholarPubMed
Engel, A. & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5, 16–25.CrossRefGoogle ScholarPubMed
Evans, P., Gilbert, S., Mekel-Bobrov, N., et al. (2005). Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science, 309, 1717–20.CrossRefGoogle ScholarPubMed
Feuk, L., Carson, A., & Scherer, S. (2006). Structural variation in the human genome. Nature Review Genetics, 7, 85–97.CrossRefGoogle ScholarPubMed
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–902.CrossRefGoogle ScholarPubMed
Fiorillo, C., Tobler, P., & Schultz, W. (2005). Evidence that the delay-period activity of dopamine neurons corresponds to reward uncertainty rather than backpropagating TD errors. Behavioral and Brain Functions, 1, 7.CrossRefGoogle ScholarPubMed
Friston, K. J. & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome?Clinical Neuroscience, 3, 89–97.Google ScholarPubMed
Gilad, Y., Segré, D., Skorecki, K., et al. (2000). Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nature Genetics, 26, 221–4.CrossRefGoogle ScholarPubMed
Gil-da-Costa, R., Martin, A., Lopes, M., et al. (2006). Species-specific calls activate homologs of Broca's and Wernicke's areas in the macaque. Nature Neuroscience, 9, 1064–70.CrossRefGoogle ScholarPubMed
Gisiger, T. & Kerszberg, M. (2006). A model for integrating elementary neural functions into delayed-response behavior. PLoS Computational Biology, 2, e25.CrossRefGoogle ScholarPubMed
Gisiger, T., Kerszberg, M., & Changeux, J-P. (2005). Acquisition and performance of delayed-response tasks: a neural network model. Cerebral Cortex, 15, 489–506.CrossRefGoogle ScholarPubMed
Glantz, L. A. & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57, 65–73.CrossRefGoogle Scholar
Gorno Tempini, M. L., Price, C. J., Josephs, O., et al. (1998). The neural systems sustaining face and proper name processing. Brain, 121, 2103–18.CrossRefGoogle ScholarPubMed
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge MA: Harvard University Press.Google Scholar
Gouzé, J. L., Lasry, J. M., & Changeux, J.-P. (1983). Selective stabilization of muscle innervation during development: a mathematical model. Biological Cybernetics, 46, 207–15.CrossRefGoogle ScholarPubMed
Gray, C. M., Engel, A. K., König, P., et al. (1992). Synchronisation of oscillatory neuronal responses in cat striate cortex: temporal properties. Visual Neuroscience, 8, 337–47.CrossRefGoogle Scholar
Gyllensten, U. B. & Erlich, H. A. (1989). Ancient roots for polymorphism at the HLA-D Q alpha locus in primates. Proceedings of the National Academy of Sciences of the U S A, 86, 9986–90.CrossRefGoogle Scholar
Hadders-Algra, M., Brogren, E., & Forssberg, H. (1996). Ontogeny of postnatal adjustments during sitting in infancy, variation, selection and modulation. Journal of Physiology, 493, 273–88.CrossRefGoogle Scholar
Hahn, M. W., Demuth, J. P., & Han, S. G. (2007). Accelerated rate of gene gain and loss in primates. Genetics, 177, 1941–9.CrossRefGoogle ScholarPubMed
Hamburger, V. (1975). Cell death in the development of the lateral motor column of the chick embryo. Journal of Comparative Neurology, 160, 535–46.CrossRefGoogle ScholarPubMed
Harris, A. E., Bard Ermentront, G., & Small, S. L. (1997). A model of ocular dominance column development by competition, for trophic factors. Proceedings of the National Academy of Sciences of the U S A, 94, 9944–9.CrossRefGoogle Scholar
Hasnain, M. K., Fox, P. T., & Woldorff, M. (1998). Intersubject variability of functional areas in the human visual cortex. Human Brain Mapping, 6, 301–15.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Hauser, M. (1999). Wild Minds. Cambridge MA: Harvard University Press.Google Scholar
Hauser, M. (2005). Our chimpanzee mind. Nature, 437, 60–3.CrossRefGoogle ScholarPubMed
Hawks, J., Wang, E. T., Cochran, G. M., et al. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences of the U S A, 104, 20753–8.CrossRefGoogle ScholarPubMed
Haynes, J.-D., Sakai, K., Rees, G., et al. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 1–16.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.Google Scholar
Herculano-Houzel, S., Collins, C. E., Wong, P., et al. (2007). Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences of the U S A, 104, 3562–7.CrossRefGoogle ScholarPubMed
Herlyn, H. & Zischler, H. (2006). Primate genomes. Genome Dynamics, 2, 17–32.CrossRefGoogle ScholarPubMed
Hodgkin, J., Horvitz, H. R., Jasny, B. R., et al. (1998). C. elegans: sequence to biology. Science, 282, 2011–46.CrossRefGoogle Scholar
Holloway, R. (1995). Toward a synthetic theory of human brain evolution. In Origins of the Human Brain, eds. Changeux, J.-P. & Chavaillon, J.. Oxford: Oxford University Press, pp. 42–60.Google Scholar
Huttenlocher, P. & Dabholkar, A. (1997). Regional difference in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–78.3.0.CO;2-Z>CrossRefGoogle Scholar
Jacob, F. (1981). Le Jeu des Possibles. Paris: Fayard.Google Scholar
Jensen, K., Call, J., & Tomasello, M. (2007). Chimpanzee are rational maximizers in an ultimatum game. Science, 318, 107–9.CrossRefGoogle Scholar
Johnson, M. & Morton, J. (1991). Biology and Cognitive Development. The Case of Face Recognition. Oxford: Blackwell.Google Scholar
Kano, M., Hashimoto, K., Kurihara, H., et al. (1997). Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR. Neuron, 18, 71–9.CrossRefGoogle Scholar
Karlsgodt, K. H., Sun, D., Jimenez, A. M., et al. (2008). Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Development and Psychopathology, 20, 1297–327.CrossRefGoogle ScholarPubMed
Katz, L. C. & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–8.CrossRefGoogle ScholarPubMed
Kee, D. W., Cherry, B., McBride, D., et al. (1998). Multi task analysis of cerebral hemisphere specialization in monozygotic twins discordant for handedness. Neuropsychology, 12, 468–78.CrossRefGoogle Scholar
Kerszberg, M. (1996). Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. Journal of Theoretical Biology, 183, 95–104.CrossRefGoogle ScholarPubMed
Kerszberg, M. & Changeux, J.-P. (1994). A model for reading morphogenetic gradients: autocatalysis and competition at the gene level. Proceedings of the National Academy of Sciences of the U S A, 91, 5823–7.CrossRefGoogle ScholarPubMed
Kerszberg, M. & Changeux, J.-P. (1998). A simple molecular model of neurulation. BioEssays, 20, 758–70.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Kim, K., Relkin, N., Lee, K. M., et al. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171–4.CrossRefGoogle ScholarPubMed
Koentges, G. (2008) Evolution of anatomy and gene control. Nature, 451, 658–63.CrossRefGoogle ScholarPubMed
Krause, J., Lalueza-Fox, C., Orlando, L., et al. (2007). The derived FOXP2 variant of modern humans was shared with Neanderthals. Current Biology, 17, 1908–12.CrossRefGoogle Scholar
Krings, M., Stone, A., Schmitz, R. W., et al. (1997). Neanderthal DNA sequences and the origin of modern humans. Cell, 90, 19–30.CrossRefGoogle Scholar
Kuida, K., Zheng, T., Na, S., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–72.CrossRefGoogle ScholarPubMed
Kuida, K., Haydan, T., Kuan, C., et al. (1998). Reduced apoptosis and cytochromic-mediated caspase activation in mice lacking caspase 9. Cell, 94, 325–37.CrossRefGoogle ScholarPubMed
Lander, E. S., Linton, L. M., Birren, B., et al. (2001). International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle ScholarPubMed
Landi, S., Cenni, C., Maffei, L., et al. (2007). Environment enrichment on development of retinal ganglion cell dendritic stratification require retinal BDNF. PloS one, 4, e346, 1–11.Google Scholar
Lawrence, P. (1992). The Making of a Fly. Oxford: Blackwell.Google Scholar
Clec'h, G., Dehaene, S., Cohen, L., et al. (2000). Distinct cortical areas for names of numbers and body parts independent of language and input modality. NeuroImage, 12, 381–91.CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. (1987). The nerve growth factor: thirty five years later. Science, 237, 1154–62.CrossRefGoogle Scholar
Levi-Strauss, C. (1961). Race et Histoire. Gonthiers: UNESCO.Google Scholar
Levinthal, F., Macagno, E., & Levinthal, L. (1976). Anatomy and development of identified cells in isogenic organisms. Journal of Theoretical Biology, 40, 321–31.Google ScholarPubMed
Levy, S., Sutton, G., Ng, P. C., et al. (2007). The diploid genome sequence of an individual human. PLoS Biology, 5, e254.CrossRefGoogle ScholarPubMed
Lisman, J. & Fallon, J. F. (1999). What maintains memories. Science, 283, 339–40.CrossRefGoogle ScholarPubMed
Lohof, A. M., Ip, N. Y., & Poo, M. M. (1993). Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 363, 350–3.CrossRefGoogle ScholarPubMed
Low, L. & Cheng, H.-J. (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1531–44.CrossRefGoogle ScholarPubMed
Luo, L. & O'Leary, D. M. (2005). Axon retraction and degeneration in development and disease. Annual Review of Neuroscience, 28, 127–56.CrossRefGoogle ScholarPubMed
Maffei, L., Berardi, N., Domenici, L., et al. (1992). Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Journal of Neuroscience, 12, 4651–62.CrossRefGoogle ScholarPubMed
Mandel, J. L. (1995). The human genome. In Origins of the Human Brain, eds. Changeux, J.-P. & Chavaillon, J.. Oxford: Oxford University Press, pp. 42–60.Google Scholar
Maness, P. F. & Schachner, M. (2007). Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nature Neuroscience, 10, 20–6.Google ScholarPubMed
Mannervik, M., Nibu, Y., Zhang, H., et al. (1999). Transcriptional coregulators in development. Science, 284, 606–9.CrossRefGoogle ScholarPubMed
Meinhardt, H. & Gierer, A. (1974). Application of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science, 15, 321–46.Google Scholar
Miklos, G. L. & Rubin, G. M. (1996). The role of the genome project in development. Neural Computation, 10, 529–47.Google Scholar
Miller, K. D. (1998). Equivalence of a sprouting-and-retraction model and correlation-based plasticity models of neural development. Neural Computation, 10, 529–47.CrossRefGoogle ScholarPubMed
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–47.CrossRefGoogle ScholarPubMed
Mountcastle, V. (1998). Perceptual Neuroscience: The Cerebral Cortex. Cambridge, MA: Harvard University Press.Google Scholar
Nguyen, Q. T., Parsadanian, A. S., Snider, W. D., et al. (1998). Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science, 279, 1725–9.CrossRefGoogle ScholarPubMed
Nicotera, P., Leist, M., & Manzo, L. (1999). Neuronal cell death: a demise with different shapes. Trends in Pharmacology, 20, 46–51.CrossRefGoogle ScholarPubMed
Nüsslein Volhard, C. (1990). Axis determination in the Drosophila embryo. Harvey Lectures, 86, 129–48.Google ScholarPubMed
O'Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron, 25, 252–69.CrossRefGoogle Scholar
Paabo, S. (2003). The mosaic that is our genome. Nature, 421, 409–12.CrossRefGoogle ScholarPubMed
Paracchini, S., Scerri, T., & Monaco, A. P. (2007). The genetic lexicon of dyslexia. Annual Review of Genomics and Human Genetics, 8, 57–79.CrossRefGoogle ScholarPubMed
Persico, A. M. & Bourgeron, T. (2006). Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends in Neurosciences, 29, 349–58.CrossRefGoogle ScholarPubMed
Ponting, C. & Jackson, A. P. (2005). Evolution of primary microcephaly genes and the enlargement of primate brains. Current Opinion in Genetics and Development, 15, 241–8.CrossRefGoogle ScholarPubMed
Premack, D. (2007). Human and animal cognition: continuity and discontinuity. Proceedings of the National Academy of Sciences of the U S A, 104, 13861–7.CrossRefGoogle ScholarPubMed
Purves, D. & Lichtman, J. (1980). Elimination of synapses in the developing nervous system. Science, 210, 153–7.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specifications of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle Scholar
Ravel-Chapuis, A., Vandromme, M., Thomas, J. L., et al. (2007). Postsynaptic chromatin is under neural control at the neuromuscular junction. EMBO Journal, 26, 1117–28.CrossRefGoogle ScholarPubMed
Reiner, A., Perkel, D. J., Bruce, L. L., et al. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 473, 377–414.CrossRefGoogle ScholarPubMed
,Rhesus Macque Genome Sequencing and Analysis Consortium (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316, 222–34.CrossRefGoogle Scholar
Rockwell, A., Hiorns, R., & Powell, T. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–4.CrossRefGoogle Scholar
Rouquier, S., Blancher, A., & Giorgi, D. (2000). The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proceedings of the National Academy of Sciences of the U S A, 97, 2870–4.CrossRefGoogle ScholarPubMed
Rual, J. F., Venkatesan, K., Hao, T., et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437, 1173–8.CrossRefGoogle ScholarPubMed
Rubin, G. M., Yandell, M. D., Wortman, J. R., et al. (2000). Comparative genomics of the eukaryotes. Science, 287, 2204–15.CrossRefGoogle ScholarPubMed
Ruvkun, G. & Hobert, O. (1998). The taxonomy of developmental control in Caenorhabditis elegans. Science, 282, 2033–40.CrossRefGoogle ScholarPubMed
Saban, R. (1995). Image of the human fossil brain: endocranial casts and meningeal vessels in young and adult subjects. In Origins of the Human Brain, eds. Changeux, J.-P. & Chavaillon, J.. Oxford: Oxford University Press, pp. 11–41.Google Scholar
Sanes, J. R. & Lichtman, J. W. (1999). Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience, 22, 389–42.CrossRefGoogle ScholarPubMed
Schaeffer, L., Duclert, N., Huchet, M., et al. (1998). Implication of an Ets and Notch related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO Journal, 17, 3078–90.CrossRefGoogle ScholarPubMed
Schütz, W., Dayan, P., & Montague, R. A. (1997). A neural substrate of prediction and reward. Science, 275, 1593–9.CrossRefGoogle Scholar
Searle, J. (1995). The Construction of Social Reality. New York: Free Press.Google Scholar
Searle, J. (2000). Consciousness. Annual Review of Neuroscience, 23, 557–79.CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52, 805–18, discussion 819–20.CrossRefGoogle ScholarPubMed
Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink. Nature Neuroscience, 8, 1391–400.CrossRefGoogle ScholarPubMed
Shallice, T. (1988). From Neuropsychology to Mental Structure. New York: Cambridge University Press.CrossRefGoogle Scholar
Smolen, P., Baxter, D. A., & Byrne, J. H. (2000). Mathematical modeling of gene networks. Neuron, 26, 567–80.CrossRefGoogle ScholarPubMed
Stack, D. & Kummer, B. (1962). Zur Ontogenese des Schimpanzenschädels. Anthropologischer Anzeiger, 25, 204–15.Google Scholar
Steinmetz, H., Hergoz, A., Schlang, G., et al. (1995). Brain asymmetry in monozygotic twins. Cerebral Cortex, 5, 296–300.CrossRefGoogle ScholarPubMed
Stelzl, U., Worm, U., Lalowski, M., et al. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell, 122, 957–68.CrossRefGoogle ScholarPubMed
Strand, A. D., Aragaki, A. K., Baquet, Z. C., et al. (2007). Conservation of regional gene expression in mouse and human brain. PLoS Genetics, 3, e59.CrossRefGoogle ScholarPubMed
Stretavan, D. W. & Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. Journal of Neuroscience, 6, 234–51.CrossRefGoogle Scholar
Sun, D., Stuart, G. W., Jenkinson, M., et al. (2008). Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Molecular Psychiatry, July 2008, Epub ahead of print.Google ScholarPubMed
Tessier-Lavigne, M. & Goodman, C. S. (1996). The molecular biology of axon guidance. Science, 274, 1123–33.CrossRefGoogle ScholarPubMed
Thoenen, H. (1995). Neurotrophins and neuronal plasticity. Science, 270, 593–8.CrossRefGoogle ScholarPubMed
Thompson, P., Cannon, T., Narr, K., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1253–8.CrossRefGoogle ScholarPubMed
Tononi, G. & Edelman, G. (1998). Consciousness and complexity. Science, 282, 1846–51.CrossRefGoogle ScholarPubMed
Traino, M. J., Loftus, W. C., Stukel, T. A., et al. (1998). Brain size, head size and intelligence quotient in monozygotic twins. Neurology, 50, 1246–52.CrossRefGoogle Scholar
Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society London. Series B, Biological Sciences, 237, 37–72.CrossRefGoogle Scholar
Vaadia, E., Haalman, I., Abeles, M., et al. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373, 515–18.CrossRefGoogle ScholarPubMed
Vandenberghe, R., Price, C., Wise, R., et al. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383, 254–6.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Meyers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–51.CrossRefGoogle ScholarPubMed
Watson, J. D., Baker, T. A., Bell, S. P., et al. (2007). Molecular Biology of the Gene, 6th edn. USA: Pearson Education (Benjamin-Cummings Publishing Company).Google Scholar
Wiesel, T. N. & Hubel, D. H. (1963a). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology, 26, 978–93.CrossRefGoogle ScholarPubMed
Wiesel, T. N. & Huble, D. H. (1963b). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×