Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-06T19:57:37.757Z Has data issue: false hasContentIssue false

8 - When is a differentiable manifold the boundary of an orbifold?

Published online by Cambridge University Press:  07 September 2010

Hernan Ocampo
Affiliation:
Universidad del Valle, Colombia
Eddy Pariguan
Affiliation:
Pontificia Universidad Javeriana, Colombia
Sylvie Paycha
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Abstract

The aim of this short chapter is to review some classical results on cobordism of manifolds and discuss recent extensions of this theory to orbifolds. In particular, I present an answer to the question “When is a differentiable manifold the boundary of an orbifold?” in the oriented case and in the unoriented case when we restrict to isotropy groups of odd order.

Introduction

When is a differentiable manifold the boundary of another differentiable manifold? This question was answered by Thom [14] in the 1950s; the necessary and sufficient condition is the vanishing of certain characteristic numbers, invariants defined by evaluating characteristic classes of the tangent bundle on the fundamental class of the manifold. His proof is one of the cornerstones of algebraic topology [2] and shows the powerful tools that homotopy theory gives to the study of the geometry of manifolds.

Orbifolds, originally introduced as V-manifolds by Satake [12], and so named by Thurston [15], are useful generalizations of manifolds: locally they look like the quotient of Euclidean space by the action of a finite group. Their study lies at the intersection of many different areas of mathematics, and they appear naturally in many situations such as moduli problems, noncommutative geometry and foliation theory. The local character of the definition of orbifolds allows many constructions that can be applied to manifolds to be extended to orbifolds, and it is natural to ask, When is an orbifold the boundary of another orbifold? Key ingredients of Thom's proof do not seem to extend naturally to orbifolds, and the interplay between geometry and homotopy theory, in this case, is still not understood.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×