Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T23:47:37.981Z Has data issue: false hasContentIssue false

3 - Reporter Gene Imaging with PET/SPECT

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Molecular imaging (MI) allows in vivo visualization of normal and abnormal cellular processes at the molecular and genomic levels, rather than at the anatomical level. MI is a relatively new biomedical discipline that enables cellular and subcellular biologic processes within living subjects to be visualized, characterized, and quantified. MI combines molecular biology and medical imaging and is increasingly attracting research attention in the molecular cell biology, chemistry, genetics, biomedical physics, engineering, and medical fields. It can be used to study genomics, proteomics, metabolomics, various intracellular processes, and cell–cell interactions. A major focus of MI is genetic imaging, that is, “molecular–genetic imaging,” and imaging reporter genes are set to play a leading role in molecular–genetic imaging.

Conventionally, gene expression levels can be determined by assaying reporter gene expression. To achieve this, a recombinant plasmid is constructed that expresses simultaneously a gene of interest and a reporter gene in a correlated manner, then it is transfected into target cells. When transcription and translation of the gene of interest and reporter gene occur simultaneously, by assaying reporter protein activity, gene expression can be indirectly evaluated in transfected cells. Conventional reporter genes include β-galactosidase, alkaline phosphatase, luciferases, and green fluorescent protein, but the conventional techniques of assaying them often required tissue sampling. More recent techniques with imaging reporter genes allow noninvasive and repetitive determination of transgene expression studies in living animals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Massoud, T. F., Gambhir, S. S. (2007). Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med 13: 183–191.CrossRefGoogle Scholar
Tjuvajev, J. G., Stockhammer, G., Desai, R. et al. (1995). Imaging the expression of transfected genes in vivo. Cancer Res 55: 6123–6132.Google ScholarPubMed
Gambhir, S. S., Barrio, J. R., Wu, L. et al. (1998). Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39: 2003–2011.Google ScholarPubMed
Gambhir, S. S., Barrio, J. R., Phelps, M. E. et al. (1999). Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96: 2333–2338.CrossRefGoogle ScholarPubMed
Kim, J. S., Lee, J. S., Im, K. C. et al. (2007). Performance measurement of the microPET Focus 120. J Nucl Med 48: 1527–1535.CrossRefGoogle ScholarPubMed
Beekman, F., Have, F. (2007). The pinhole: gateway to ultra-highresolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34: 151–161.CrossRefGoogle ScholarPubMed
Townsend, D. W., Carney, J. P., Yap, J. T., Hall, N. C. (2004). PET/CT today and tomorrow. J Nucl Med 45(Suppl 1): 4S–14S.Google ScholarPubMed
Pichler, B. J., Judenhofer, M. S., Catana, C. et al. (2006). Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47: 639–647.Google Scholar
Iyer, M., Sato, M., Johnson, M. et al. (2005). Application of molecular imaging in cancer therapy. Curr Gene Ther 5: 607–618.CrossRefGoogle Scholar
MacLaren, D. C., Gambhir, S. S., Satyamurthy, N. et al. (1999). Repetitive, noninvasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 5: 785–791.CrossRefGoogle Scholar
Gambhir, S. S., Herschman, H. R., Cherry, S. R. et al. (2000). Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2: 118–138.CrossRefGoogle ScholarPubMed
Min, J. J., Iyer, M., Gambhir, S. S. (2003). Comparison of F-18 FHBG and c03-88233 FIAU for imaging of HSV1-tkk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imaging 30: 1547–1560.CrossRefGoogle Scholar
Abbruzzese, J. L., Schmidt, S., Raber, M. N. et al. (1989). Phase I trial of 1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl)-5-methyluracil (FMAU) terminated by severe neurologic toxicity. Invest New Drugs 7: 195–201.CrossRefGoogle Scholar
Cui, L., Yoon, S., Schinazi, R. F., Sommadossi, J. P. (1995). Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil in human liver cells. J Clin Invest 95: 555–563.CrossRefGoogle ScholarPubMed
Wang, J., Eriksson, S. (1996). Phosphorylation of the anti-hepatitis B nucleoside analog 1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil (FIAU) by human cytosolic and mitochondrial thymidine kinase and implications for cytotoxicity. Antimicrob Agents Chemother 40: 1555–1557.Google Scholar
Acton, P. D., Zhou, R. (2005). Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Mol Imaging 49: 349–360.Google ScholarPubMed
Tjuvajev, J. G., Doubrovin, M., Akhurst, T. et al. (2002). Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43: 1072–1083.Google ScholarPubMed
Kang, K. W., Min, J. J., Chen, X., Gambhir, S. S. (2005). Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 7: 296–303.CrossRefGoogle Scholar
Buursma, A. R., Rutgers, V., Hospers, G. A., Mulder, N. H., Vaalburg, W., Vries, E. F. (2006). 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl Med Commun 27: 25–30.CrossRefGoogle ScholarPubMed
Black, M. E., Newcomb, T. G., Wilson, H. M. P., Lobe, L. A. (1996). Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc Nat Acad Sci USA 93: 3525–3529.CrossRefGoogle ScholarPubMed
Gambhir, S. S., Bauer, E., Black, M. E. et al. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97: 2785–2790.CrossRefGoogle ScholarPubMed
Chin, F. T., Namavari, M., Levi, J., Subbarayan, M., Ray, P., Chen, X., Gambhir, S. S. (2008). Semiautomated radiosynthesis and biological evaluation of [18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression. Mol Imaging Biol 10: 82–91.CrossRefGoogle Scholar
Degrève, B., Esnouf, R., De Clercq, E., Balzarini, J. (2000). Selective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine. Mol Pharmacol 58: 1326–1332.CrossRefGoogle Scholar
Likar, Y., Dobrenkov, K., Olszewska, M. et al. (2008). A new acycloguanosine-specific supermutant of herpes simplex virus type 1 thymidine kinase suitable for PET imaging and suicide gene therapy for potential use in patients treated with pyrimidine-based cytotoxic drugs. J Nucl Med 49: 713–720.CrossRefGoogle ScholarPubMed
Yaghoubi, S., Couto, M. A., Chen, C. C. et al. (2006). Preclinical safety evaluation of F-18 FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk's expression. J Nucl Med 47: 706–715.Google ScholarPubMed
Yaghoubi, S., Barrio, J. R., Dahlbom, M. et al. (2001). Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42: 1225–1234.Google ScholarPubMed
Green, L. A., Nguyen, K., Berenji, B. et al. (2004). A tracer kinetic model for F-18 FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45: 1560–1570.Google Scholar
Cabrita, M. A., Baldwin, S. A., Young, J. D., Cass, C. E. (2002). Molecular biology and regulation of nucleoside and nucleobase transporter proteins in eukaryotes and prokaryotes. Biochem Cell Biol 80: 623–638.CrossRefGoogle ScholarPubMed
Choi, S. R., Zhuang, Z. P., Chacko, A. M. et al. (2006). SPECT imaging of herpes simplex virus type 1 thymidine kinase gene expression by I-123 FIAU. Acad Radiol 12: 798–805.CrossRefGoogle Scholar
Riddell, S., Elliott, M., Lewinshon, D. et al. (1996). T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 2: 216–223.CrossRefGoogle ScholarPubMed
Ponomarev, V., Doubrovin, M., Shavrin, A. et al. (2007). A human-derived reporter gene for noninvasive imaging in humans: Mitochondrial thymidine kinase type 2. J Nucl Med 48: 819–826.CrossRefGoogle ScholarPubMed
Wang, J., Eriksson, S. (1996). Phosphorylation of the anti-hepatitis B nucleoside analog 1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil (FIAU) by human cytosolic and mitochondrial thymidine kinase and implications of cytotoxicity. Antimicrob Agents Chemother 40: 1555–1557.Google Scholar
Piskur, J., Sandrini, M. P., Knecht, W., Munch-Petersen, B. (2004). Animal deoxyribonucleoside kinases: ‘forward’ and ‘retrograde’ evolution of their substrate specificity. FEBS Lett 560: 3–6.CrossRefGoogle ScholarPubMed
Serganova, I., Ponomarev, V., Blasberg, R. (2007). Human reporter genes: potential use in clinical studies. Nucl Med Biol 34: 791–807.CrossRefGoogle ScholarPubMed
Wu, J. C., Spin, J. M., Cao, F. et al. (2006). Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics 25: 29–38.CrossRefGoogle ScholarPubMed
Liang, Q., Satyamurthy, N., Barrio, J. R. et al. (2001). Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8: 1490–1498.CrossRefGoogle ScholarPubMed
Liang, Q., Gotts, J., Satyamurthy, N. et al. (2002). Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 6: 73–82.CrossRefGoogle ScholarPubMed
Rogers, B. E., Zinn, K. R., Buchsbaum, D. J. (2000). Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 44: 208–223.Google ScholarPubMed
Chung, J. K. (2002). Sodium/iodide symporter; its role in nuclear medicine. J Nucl Med 43: 1188–1200.Google Scholar
Dai, G., Levy, O., Carrasco, N. (1996). Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460.CrossRefGoogle ScholarPubMed
Smanik, P. A., Lui, Q., Furminger, T. L. et al. (1996). Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 226: 339–345.CrossRefGoogle ScholarPubMed
Shin, J. H., Chung, J-K., Kang, J. H. et al. Feasibility of sodium/iodide symporter (NIS) gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging 31: 425–432.
Levy, O., Vieja, A., Ginter, C. S., Riedel, C., Dai, G., Carrasco, N. (1998). N-linked glycosylation of the thyroid Na+/I- symporter (NIS). Implications for its secondary structure model. J Biol Chem 273: 22657–22663.CrossRefGoogle ScholarPubMed
Vadysirisack, D. D., Chen, E. S., Zhang, Z., Tsai, M. D., Chang, G. D., Jhiang, S. M. (2007). Identification of in vivo phosphorylation sites and their functional significance in the sodium iodide symporter. J Biol Chem 282: 36820–36828.CrossRefGoogle ScholarPubMed
Sande, J., Massart, C., Beauwens, R. et al. (2003). Anion selectivity by the sodium iodide symporter. Endocrinology 144: 247–252.CrossRefGoogle ScholarPubMed
Lee, K. H., Bae, J. S., Lee, S. C. et al. (2006). Evidence that myocardial Na/I symporter gene imaging does not perturb cardiac function. J Nucl Med 47: 1851–1857.Google Scholar
Huang, M., Batra, R. K., Kogai, T. et al. (2001). Ectopic expression of the thyroidperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 8: 612–618.CrossRefGoogle Scholar
Vadysirisack, D. D., Shen, D. H., Jhiang, S. M. (2006). Correlation of Na+/I− symporter expression and activity: implications of Na+/I− symporter as an imaging reporter gene. J Nucl Med 47: 182–190.Google ScholarPubMed
Rogers, B. E., McLean, S. F., Kirkman, R. L. et al. (1999). In vivo localization of [111In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 5: 383–393.Google Scholar
Krenning, E. P., Bakker, W. H., Breeman, W. A. et al. (1989). Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 863: 242–244.CrossRefGoogle Scholar
Bakker, W. H., Albert, R., Bruns, C. et al. (1991). [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci 49: 1583–1591.CrossRefGoogle ScholarPubMed
Bossche, B., Wiele, C. (2004). Receptor imaging in oncology by means of nuclear medicine: current status. J Clin Oncol 22: 3593–3607.CrossRefGoogle Scholar
Rogers, B. E., Parry, J. J., Andrews, R., Cordopitis, P., Nock, B. A., Maina, T. (2005). MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and Tc03-88233m Demotate 1. J Nucl Med 46: 1889–1897.Google ScholarPubMed
Zinn, K. R., Chaudhuri, T. R. (2002). The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 29: 288–399.CrossRefGoogle ScholarPubMed
Rogers, B. E., Chaudhuri, T. R., Reynolds, P. N., Della Manna, D., Zinn, K. R. (2003). Non-invasive gamma camera imaging of gene transfer using an adenoviral vector encoding an epitope-tagged receptor as a reporter. Gene Ther 10: 105–114.CrossRefGoogle ScholarPubMed
Altmann, A., Kissel, M., Zitzmann, S. et al. (2003). Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44: 973–980.Google ScholarPubMed
Anton, M., Wagner, B., Haubner, R. et al. (2004). Use of the norepinephrine transporter as a reporter gene for non-invasive imaging of genetically modified cells. J Gene Med 6: 119–126.CrossRefGoogle ScholarPubMed
Buursma, A. R., Beerens, A. M. J., Vries, E. F. J. et al. (2005). The human norepinephrine transporter in combination with c03-88233-m-hydroxyephedrine as a reporter gene/probe for PET of gene therapy. J Nucl Med 46: 2068–2075.Google ScholarPubMed
Doubrovin, M. M., Doubrovin, E. S., Zanzonico, P., Sadelain, M., Larson, S. M., O'Reilly, R. J. (2007). In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 67: 11959–11969.CrossRefGoogle ScholarPubMed
Moroz, M. A., Serganova, I., Zanzonico, P. et al. (2007). Imaging hNET reporter gene expression with I-124 MIBG. J Nucl Med 48: 827–836.CrossRefGoogle Scholar
Furukawa, T., Lohith, T. G., Takamatsu, S., Mori, T., Tanaka, T., Fujibayashi, Y. (2006). Potential of the FES-hERL PET reporter gene system – basic evaluation for gene therapy monitoring. Nucl Med Biol 33: 145–151.CrossRefGoogle ScholarPubMed
Mintun, M. A., Welch, M. J., Siegel, B. A. et al. (1988). Breast cancer: PET imaging of estrogen receptors. Radiology 169: 45–48.CrossRefGoogle ScholarPubMed
Huber, B. E., Richards, C. A., Krenitsky, T. A. (1991). Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci U S A 88: 8039–8043.CrossRefGoogle ScholarPubMed
Degreve, B., Andrei, G., Izquierdo, M. et al. (1997). Varicella-zoster virus thymidine kinase gene and antiherpetic pyrimidine nucleoside analogues in a combined gene/chemotherapy treatment for cancer. Gene Ther 4:1107–1114.CrossRefGoogle Scholar
McGuigan, C., Barucki, H., Carangio, A. et al. (2000). Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J Med Chem 43: 4993–4997.CrossRefGoogle ScholarPubMed
Chitneni, S. K., Deroose, C. M., Fonge, H. et al. (2007). Synthesis and biological evaluation of an I-123 labeled bicyclic nucleoside analogue (BCNA) as potential SPECT tracer for VZV-tk reporter gene imaging. Bioorg Med Chem Lett 17: 3458–3462.CrossRefGoogle Scholar
Chitneni, S. K., Deroose, C. M., Balzarini, D. J. et al. (2007). Synthesis and preliminary evaluation of F-18 or c03-88233 labeled bicyclic nucleoside analogue (BCNA) for imaging Varicella-Zoster virus thymidine kinase gene expression using positron emission tomography. J Med Chem 50: 1041–1049.CrossRefGoogle ScholarPubMed
Kang, J. H., Chung, J. K. (2008). Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49: 164s–179s.CrossRefGoogle ScholarPubMed
Gross, S., Piwnica-Worms, D. (2006). Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol 10: 334–342.CrossRefGoogle ScholarPubMed
Gilad, A. A., Winnard, P. T., Zijl, P. C., Bulte, J. W. (2007). Developing MR reporter genes: promises and pitfalls. NMR Biomed 20: 275–290.CrossRefGoogle ScholarPubMed
Shin, J. H., Chung, J. K., Kang, J. H. et al. (2004). Non-invasive imaging for monitoring of viable cancer cells using dual-imaging reporter gene. J Nucl Med 45: 2109–2115.Google Scholar
Wang, Y., Iyer, M., Annala, A. J. et al. (2005). Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 46: 667–674.Google ScholarPubMed
Lily, W., Mai, J., Makoto, S. (2003). Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med 9: 421–429.Google Scholar
Ponomarev, V., Doubrovin, M., Serganova, I. et al. (2003). Cytoplasmically retargeted HSV1-tk/GFP reporter gene mutants for optimization of noninvasive molecular-genetic imaging. Neoplasia 5: 245–254.CrossRefGoogle ScholarPubMed
Wang, U., Yu, Y. A., Shabahang, S., Wang, G., Szalay, A. A. (2002). Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol Genet Genomics 268: 160–168.CrossRefGoogle ScholarPubMed
Sun, X., Annala, A. J., Yaghoubi, S. S. et al. (2001). Quantitative imaging of gene induction in living animals. Gene Ther 8: 1572–1579.CrossRefGoogle ScholarPubMed
De, A., Lewis, X. A., Gambhir, S. S. (2003). Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 7: 681–691.CrossRefGoogle ScholarPubMed
Ray, P., Tsien, R., Gambhir, S. S. (2007). Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjectsCancer Res 67: 3085–3093.CrossRefGoogle ScholarPubMed
Goertzen, A. L., Meadors, A. K., Silverman, R. W., Cherry, S. R. (2002). Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 47: 4315–4328.CrossRefGoogle ScholarPubMed
Ottobrini, L., Ciana, P., Biserni, A. et al. (2006). Molecular imaging: a new way to study cellular processes in vivo. Mol Cell Endo 246: 69–75.CrossRefGoogle Scholar
Yaghoubi, S. S., Barrio, J. R., Namavari, M., Satyamurthy, N., Phelps, M. E., Herschman, H. R., Gambhir, S. S.Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12: 329–339.CrossRef
Bushnell, D., Menda, Y., O'Dorisio, T. et al. (2004). Effects of intravenous amino acid administration with Y-90 DOTA-Phe1-Tyr3-Octreotide (SMT487[OctreoTher) treatment. Cancer Biother Radiopharm 19: 35–41.CrossRefGoogle ScholarPubMed
Dadachova, E., Carrasco, N. (2004). The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 34(1): 23–31.CrossRefGoogle ScholarPubMed
Kang, J. H., Chung, J. K., Lee, Y. J. et al. (2004). Establishment of a human hepatocellular carcinoma cell line highly expressing sodium iodide symporter for radionuclide gene therapy. J Nucl Med 45: 1571–1576.Google ScholarPubMed
Jacobs, A., Voges, J., Reszka, R. et al. (2001). Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 9283: 727–729.CrossRefGoogle Scholar
Penuelas, I., Mazzolini, G., Boan, J. F. et al. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128: 1787–1795.CrossRefGoogle ScholarPubMed
Adams, J. Y., Johnson, M., Sata, M. et al. (2002). Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 8: 891–897.CrossRefGoogle ScholarPubMed
Jin, Y. N., Chung, H. K., Kang, J. H. et al. (2007). Hepatoma-targeted human sodium iodide symporter gene expression using alpha fetoprotein enhancer/promoter [abstract]. J Nucl Med 48(Suppl): 328.Google Scholar
Doubrovin, M., Ponomarev, V., Beresten, T. et al. (2001). Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 98: 9300–9305.CrossRefGoogle ScholarPubMed
Kim, K. I., Chung, J. K., Kang, J. H. et al. (2005). Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter. Clin Cancer Res 11: 123–128.Google ScholarPubMed
Kang, Y., He, W., Tulley, S. et al. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102: 13909–13914.CrossRefGoogle ScholarPubMed
So, M. K., Kang, J. H., Chung, J. K. et al. (2004). In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene. Mol Imaging 3: 163–171.CrossRefGoogle ScholarPubMed
Kang, J. H., Chung, J. K., Lee, Y. J. et al. (2006). Evaluation of transcriptional activity of the oestrogen receptor with sodium iodide symporter as an imaging reporter gene. Nucl Med Commun 27: 773–777.CrossRefGoogle ScholarPubMed
Iyer, M., Wu, L., Carey, M., Wang, Y., Smallwood, A., Gambhir, S. S. (2001). Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA 98: 14595–14600.CrossRefGoogle ScholarPubMed
Iyer, M., Salazar, F. B., Lewis, X. et al. (2005). Non-invasive imaging of a transgenic mouse model using a prostate-specific two-step transcriptional amplification strategy. Transgenic Res 14: 47–55.CrossRefGoogle ScholarPubMed
Hwang, W., Kang, J. H., Jeong, J. M. et al. (2008). Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter. Eur J Nucl Med Mol Imaging 35: 135–145.CrossRefGoogle ScholarPubMed
Ray, P., Pimenta, H., Paulmurugan, G. et al. (2002). Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99: 3105–3110.CrossRefGoogle ScholarPubMed
Luker, G. D., Sharma, V., Pica, C. M. et al. (2002). Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci USA 99: 6961–6966.CrossRefGoogle ScholarPubMed
Paulmurugan, R., Umezawa, Y., Gambhir, S. S. (2002). Non-invasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99: 15608–15613.CrossRefGoogle Scholar
Herschman, H. R. (2004). Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res 92: 29–80.CrossRefGoogle ScholarPubMed
Kim, H. J., Jeon, Y. H., Kang, J. H. et al. (2007). In vivo long-term imaging and radioiodine therapy by sodium iodide symporter gene expression using a lentiviral system containing ubiquitin C promoter. Cancer Biol Ther 6: 1130–1135.CrossRefGoogle ScholarPubMed
Nakajima, A., Seroogy, C. M., Sandora, M. R. et al. (2001). Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 107: 1293–1301.CrossRefGoogle Scholar
Costa, G. L., Sandora, M. R., Nakajima, A. et al. (2001). Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167: 2379–2387.CrossRefGoogle ScholarPubMed
Ponomarev, R., Doubrovin, M., Lyddane, C., Beresten, T., Balatoni, J. G. (2001). Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3: 480–488.CrossRefGoogle ScholarPubMed
Wu, J. C., Chen, I. Y., Sundaresan, G. et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108: 1302–1305.CrossRefGoogle ScholarPubMed
Shin, J. H., Chung, J. K., Roh, J. K. et al. (2002). Monitoring of neural stem cell using sodium/iodide symporter gene [abstract]. J Nucl Med 43: 238.Google Scholar
Adriana, M., Luisa, O., Andrea, B. et al. (2005). Techniques: reporter mice-a new way to look at drug action. Trends Pharm Sciences 25: 337–342.Google Scholar
Ciana, P., Luccio, G., Belcredito, S. et al. (2001). Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol 15: 1104–1113.CrossRefGoogle ScholarPubMed
Ciana, P., Raviscioni, M., Mussi, P. et al. (2003). In vivo imaging of transcriptionally active estrogen receptors. Nat Med 9: 82–86.CrossRefGoogle ScholarPubMed
Green, L. A., Yap, C. S., Nguyen, K. et al. (2002). Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in transgenic mice. Mol Imaging Biol 4: 71–81.CrossRefGoogle ScholarPubMed
Cao, Y. A., Wagers, A. J., Beilhack, A. et al. (2004). Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 101: 221–226.CrossRefGoogle ScholarPubMed
Kang, J. H., Lee, D. S., Paeng, J. C. et al. (2005). Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 46: 479–483.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×