Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T19:17:14.319Z Has data issue: false hasContentIssue false

Stages of satellite accretion

Published online by Cambridge University Press:  12 May 2010

M. E. Putman
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA; Hubble Fellow; mputman@casa.colorado.edu
Mario Livio
Affiliation:
Space Telescope Science Institute, Baltimore
Thomas M. Brown
Affiliation:
Space Telescope Science Institute, Baltimore
Get access

Summary

The Galaxy's extended halo contains numerous satellites which are in the process of being disrupted. This paper discusses the stages of satellite accretion onto the Galaxy with a focus on the Magellanic Clouds and Sagittarius dwarf galaxy. In particular, a possible gaseous component to the stellar stream of the Sgr dwarf is presented that has a total neutral hydrogen mass between 4–10×106 M at the distance to the stellar debris in this direction (36 kpc). This gaseous stream was most likely stripped from the main body of the dwarf 0.2–0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10−4 cm−3. This gas represents the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5–2 Gyr ago. This is consistent with the star formation history and H I content of the other Local Group dwarf galaxies.

Introduction

Our Galaxy has built itself up by accreting satellite galaxies. This process if evident today through the satellites currently found in the extended Galactic halo. There are nine satellite galaxies within 150 kpc interacting with our Galaxy at various levels. These are in order of distance (Grebel, Gallagher, & Harbeck 2003): the Fornax dSph (138 kpc), the Carina dSph (94 kpc), the Sculptor dSph (88 kpc), the Sextans dSph (86 kpc), the Draco dSph (79 kpc), the Ursa Minor dSph (69 kpc), the Small Magellanic Cloud (63 kpc), the Large Magellanic Cloud (50 kpc), and the closest example of a recognizable accreting satellite is the Sagittarius Dwarf (28 kpc; hereafter Sgr dwarf).

Type
Chapter
Information
The Local Group as an Astrophysical Laboratory
Proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland May 5–8, 2003
, pp. 100 - 110
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stages of satellite accretion
    • By M. E. Putman, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA; Hubble Fellow; mputman@casa.colorado.edu
  • Edited by Mario Livio, Space Telescope Science Institute, Baltimore, Thomas M. Brown, Space Telescope Science Institute, Baltimore
  • Book: The Local Group as an Astrophysical Laboratory
  • Online publication: 12 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734908.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stages of satellite accretion
    • By M. E. Putman, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA; Hubble Fellow; mputman@casa.colorado.edu
  • Edited by Mario Livio, Space Telescope Science Institute, Baltimore, Thomas M. Brown, Space Telescope Science Institute, Baltimore
  • Book: The Local Group as an Astrophysical Laboratory
  • Online publication: 12 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734908.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stages of satellite accretion
    • By M. E. Putman, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA; Hubble Fellow; mputman@casa.colorado.edu
  • Edited by Mario Livio, Space Telescope Science Institute, Baltimore, Thomas M. Brown, Space Telescope Science Institute, Baltimore
  • Book: The Local Group as an Astrophysical Laboratory
  • Online publication: 12 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734908.008
Available formats
×