Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-05T03:38:01.941Z Has data issue: false hasContentIssue false

2 - Upper and Lower Bounds

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

GENERAL ALGORITHMS AND UPPER BOUNDS

Configuration Space Approach

One of the earliest achievements in the field is an algorithm by Schwartz and Sharir that can solve any “motion planning” problem, including essentially any linkage problem. The technique is to explicitly construct a representation of the free space for the mechanism and then answer all questions with this representation. For example, a reconfiguration decision question reduces to deciding if the initial configuration A is in the same connected component of the free space as the final configuration B. An example of the configuration space for a 2-link arm in the presence of obstacles is shown in Figure 2.1. Because each configuration is mapped to a point in configuration space, the complex motion of the arm in (a) of the figure is reduced to the path of a point in configuration space (b). In this case the configuration space is a torus representing two angles θ1 and θ2, each with wrap-around ranges [0, 2π] (see p. 61).

Their original algorithm, developed in the justly famous five “piano mover's” papers, resulted in a doubly exponential algorithm. Subsequent research has improved this to singly exponential. Although we will not employ this algorithm subsequently, it is an important milestone and serves as a baseline for all subsequent work, and so it is worth stating the result more precisely.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 17 - 28
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×