Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T13:33:45.365Z Has data issue: false hasContentIssue false

11 - Structure and patterns in bacterial colonies

Published online by Cambridge University Press:  05 July 2014

Nicholas C. Darnton
Affiliation:
Amherst College
Jeffrey Olafsen
Affiliation:
Baylor University, Texas
Get access

Summary

Introduction

Though the movement of a single, isolated bacterium is reasonably well understood, when a large number of interacting bacteria are put together they produce beautiful and often complex phenomena. “Large” here typically means from 106 to 1012 individual cells: a small population by thermodynamic standards, but certainly unwieldy for any except statistical descriptions. Even restricting ourselves to the simple system of bacteria moving on or in solidified agar plates, the colony structures produced are surprisingly rich. In dilute solutions, swimming cells move independently, interacting with each other through their common consumption of a reservoir of nutrient. A point source of swimming cells expands in concentric rings as successive waves of bacteria chase gradients of nutrients, sometimes condensing into regular geometric patterns by chasing self-generated gradients. More concentrated solutions of swimming cells interact hydrodynamically through the fluid, producing large-scale swirls reminiscent of turbulence. This swirling occurs in two-dimensional surface motility as well, where uncorrelated motion turns into large-scale swirling as surface density increases. At extremely high density, bacteria jam and stop moving, as occurs in colloids. These high densities occur naturally on hard surfaces, where colony expansion is driven by cell growth rather than by motion; as the surface property becomes softer and wetter and bacteria begin to move, the resulting colonies change from fractal-like to radially symmetric and finally to a form dominated by a fast-growing, single-cell-thick outer layer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J., Henrichsen, “Bacterial surface translocation: a survey and a classification,Bacteriol. Rev. 36, 478–503 (1972).Google Scholar
[2] M., Baker and R. M., Berry, “An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor,Contemp. Phys. 50, 617–32 (2009).Google Scholar
[3] Y., Sowa and R. M., Berry, “Bacterial flagellar motor,Q. Rev. Biophys. 41, 103–32 (2008).Google Scholar
[4] H., Terashima, S., Kojima, and M., Homma, “Flagellar motility in bacteria structure and function of flagellar motor,Int. Rev. Cell. Mol. Biol. 270, 39–85 (2008).Google Scholar
[5] A., Kitao, “Switch interactions control energy frustration and multiple flagellar filament structures,Proc. Nat. Acad. Sci. USA 103, 4894–9 (2006).Google Scholar
[6] K., Yonekura, S., Maki-Yonekura, and K., Namba, “Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy,Nature 424, 643–50 (2003).Google Scholar
[7] K., Namba and F., Vonderviszt, “Molecular architecture of bacterial flagellum,Q. Rev. Biophys. 30, 1-65 (1997).Google Scholar
[8] E., Lauga and T. R., Powers, “The hydrodynamics of swimming microorganisms,Rep. Prog. Phys. 72, 096601 (2009).Google Scholar
[9] S., Chattopadhyay and X.-L., Wu, “The effect of long-range hydrodynamic interaction on the swimming of a single bacterium,Biophys. J. 96, 2023–8 (2009).Google Scholar
[10] N. C., Darnton, L., Turner, S., Rojevsky, and H. C., Berg, “On torque and tumbling in swimming Escherichia coli”, J. Bacteriol. 189, 1756–64 (2007).Google Scholar
[11] S., Chattopadhyay, R., Moldovan, C., Yeung, and X. L., Wu, “Swimming efficiency of bacterium Escherichia coli,” Proc. Nat. Acad. Sci. USA 103, 13712–17 (2006).Google Scholar
[12] G., Hazelbauer, J., Falke, and J., Parkinson, “Bacterial chemoreceptors: highperformance signaling in networked arrays,Trends Biochem. Sci. 33, 9-19 (2008).Google Scholar
[13] A., Vaknin and H. C., Berg, “Physical responses of bacterial chemoreceptors,J. Mol. Biol. 366, 1416–23 (2007).Google Scholar
[14] G. H., Wadhams and J. P., Armitage, “Making sense of it all: bacterial chemotaxis,Nat. Rev. Mol. Cell Biol. 5, 1024–37 (2004).Google Scholar
[15] V., Sourjik, “Receptor clustering and signal processing in E. coli chemotaxis,Trends Microbiol. (2004).Google Scholar
[16] J., Adler, “Chemotaxis in bacteria,Science 153, 708–16 (1966).Google Scholar
[17] E. O., Budrene and H. C., Berg, “Complex patterns formed by motile cells of Escherichia coli,” Nature 349, 630–3 (1991).Google Scholar
[18] R., Nossal, “Growth and movement of rings of chemotactic bacteria,Exp. Cell Res. 75, 138–42 (1972).Google Scholar
[19] J., Adler, “Effect of amino acids and oxygen on chemotaxis in Escherichia coli,” J. Bacteriol. 92, 121–9 (1966).Google Scholar
[20] E. O., Budrene and H. C., Berg, “Dynamics of formation of symmetrical patterns by chemotactic bacteria,Nature 376, 49–53 (1995).Google Scholar
[21] M. P., Brenner, L. S., Levitov, and E. O., Budrene, “Physical mechanisms for chemotactic pattern formation by bacteria,Biophys. J. 74, 1677–93 (1998).Google Scholar
[22] N., Mittal, E. O., Budrene, M. P., Brenner, and A. V., Oudenaarden, “Motility of Escherichia coli cells in clusters formed by chemotactic aggregation,Proc. Nat. Acad. Sci. USA 100, 13259–63 (2003).Google Scholar
[23] Y., Blat and M., Eisenbach, “Tar-dependent and -independent pattern formation by Salmonella typhimurium,” J. Bacteriol. 177, 1683–91 (1995).Google Scholar
[24] D. E., Woodward, R., Tyson, M. R., Myerscough, J. D., Murray, E. O., Budrene, and H. C., Berg, “Spatio-temporal patterns generated by Salmonella typhimurium,” Biophys. J. 68, 2181–9 (1995).Google Scholar
[25] D., Emerson, “Complex pattern formation by Pseudomonas strain kc in response to nitrate and nitrite,Microbiology 145, 633–41 (1999).Google Scholar
[26] M., Matsushita, J., Wakita, H., Itoh, I., Rafols, T., Matsuyama, H., Sakaguchi, and M., Mimura, “Interface growth and pattern formation in bacterial colonies,Physica A 249, 517–24 (1998).Google Scholar
[27] R., Tokita, T., Katoh, Y., Maeda, J.-I., Wakita, M., Sano, T., Matsuyama, and M., Matsushita, “Pattern formation of bacterial colonies by Escherichia coli,” J. Phys. Soc. Jpn 78, 074005 (2009).Google Scholar
[28] M., Ohgiwari, M., Matsushita, and T., Matsuyama, “Morphological-changes in growth phenomena of bacterial colony patterns,J. Phys. Soc. Jpn 61, 816–22 (1992).Google Scholar
[29] M., Matsushita and H., Fujikawa, “Diffusion-limited growth in bacterial colony formation,Physica A 168, 498–506 (1990).Google Scholar
[30] T., Vicsek, M., Cserzo, and V., Horvath, “Self-affine growth of bacterial colonies,Physica A 167, 315-321.
[31] H., Fujikawa, “Periodic growth ofBacillus subtilis colonies on agar plates,PhysicaA 189, 15–21 (1992).Google Scholar
[32] H., Fujikawa and M., Matsushita, “Bacterial fractal growth in the concentration field of nutrient,J. Phys. Soc. Jpn 60, 88–94 (1991).Google Scholar
[33] H., Fujikawa and M., Matsushita, “Fractal growth of Bacillus subtilis on agar plates,J. Phys. Soc. Jpn 58, 3875–8 (1989).Google Scholar
[34] H., Fujikawa, “Diversity of the growth patterns of Bacillus subtilis colonies on agar plates,FEMS Microbiol. Ecol. 13, 159–67 (1994).Google Scholar
[35] I., Rafols, “Formation of concentric rings in bacterial colonies,” Chuo University (1998).Google Scholar
[36] T., Matsuyama, M., Sogawa, and Y., Nakagawa, “Fractal spreading growth of Serratia marcescens which produces surface active exolipids,FEMS Microbiol. Lett. 61, 243–6 (1989).Google Scholar
[37] T., Matsuyama and M., Matsushita, “Self-similar colony morphogenesis by gramnegative rods as the experimental model of fractal growth by a cell population,Appl. Environ. Microbiol. 58, 1227–32 (1992).Google Scholar
[38] T., Matsuyama and M., Matsushita, “Fractal morphogenesis by a bacterial cell population,Crit. Rev. Microbiol. 19, 117–35 (1993).Google Scholar
[39] A., Nakahara, Y., Shimada, J., Wakita, M., Matsushita, and T., Matsuyama, “Morphological diversity of the colony produced by bacteria Proteus mirabilis,” J. Phys. Soc. Jpn 65, 2700–6 (1996).Google Scholar
[40] I., Das, A., Kumar, and U., Singh, “Nonequilibrium growth of Klebsiella ozaenae on agar plates,Indian J. Chem. A 36, 197–200 (1997).Google Scholar
[41] I., Das, A., Kumar, and U., Singh, “Dynamic instability and non-equilibrium patterns during the growth of E. coli,” Indian J. Chem. A 36, 1018–22 (1997).Google Scholar
[42] M., Tcherpakov, E., Ben-Jacob, and D. L., Gutnick, “Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster,Int. J. Syst. Bacteriol. 49, 239–46 (1999).Google Scholar
[43] M., Ruzicka, M., Fridrich, and M., Burkhard, “A bacterial colony is not self-similar,Physica A 216, 382–5 (1995).Google Scholar
[44] M., Obert, P., Pfeifer, and M., Sernetz, “Microbial growth patterns described by fractal geometry,J. Bacteriol. 172, 1180–5 (1990).Google Scholar
[45] S., Tang, Y., Ma, and I., Sebastine, “The fractal nature of Escherichia coli biological flocs,Colloids and Surfaces B: Biointerfaces 20, 211–18 (2001).Google Scholar
[46] M., Eden, “A two-dimensional growth process,Proc. Berkeley Symp. Math. Stat. Prob. 4, 233 (1961).Google Scholar
[47] P. W., Lindum, U., Anthoni, C., Christophersen, L., Eberl, S., Molin, and M., Givskov, “N-acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens mg1,J. Bacteriol. 180, 6384–8 (1998).Google Scholar
[48] N. H., Mendelson and B., Salhi, “Patterns of reporter gene expression in the phase diagram of Bacillus subtilis colony forms,J. Bacteriol. 178, 1980–9 (1996).Google Scholar
[49] D. B., Kearns and R., Losick, “Swarming motility in undomesticated Bacillus subtilis,” Mol. Microbiol. 49, 581–90 (2003).Google Scholar
[50] D., Julkowska, M., Obuchowski, I. B., Holland, and S. J., Seror, “Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium,J. Bacteriol. 187, 65–76 (2005).Google Scholar
[51] R. M., Harshey and T., Matsuyama, “Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells,Proc. Nat. Acad. Sci. USA 91, 8631–5 (1994).Google Scholar
[52] M.-P., Zorzano, D., Hochberg, M.-T., Cuevas, and J.-M., Gomez-Gomez, “Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime,Phys. Rev. E 71, 031908 (2005).Google Scholar
[53] R., Daniels, J., Vanderleyden, and J., Michiels, “Quorum sensing and swarming migration in bacteria,FEMS Microbiol. Rev. 28, 261–89 (2004).Google Scholar
[54] O., Rauprich, M., Matsushita, C. J., Weijer, F., Siegert, S. E., Esipov, and J. A., Shapiro, “Periodic phenomena in Proteus mirabilis swarm colony development,J. Bacteriol. 178, 6525–38 (1996).Google Scholar
[55] A., Sokolov, I. S., Aranson, J. O., Kessler, and R. E., Goldstein, “Concentration dependence of the collective dynamics of swimming bacteria,Phys. Rev. Lett. 98, 158102 (2007).Google Scholar
[56] X. L., Wu and A., Libchaber, “Particle diffusion in a quasi-two-dimensional bacterial bath,Phys. Rev. Lett. 84, 3017–20 (2000).Google Scholar
[57] L. L., McCarter, “Polar flagellar motility of the Vibrionaceae,” Microbiol. Mol. Biol. Rev. 65, 445–62 (2001).Google Scholar
[58] S. M., Kirov, “Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis,FEMS Microbiol. Lett. 224, 151–9 (2003).Google Scholar
[59] L., Cisneros, C., Dombrowski, R. E., Goldstein, and J. O., Kessler, “Reversal of bacterial locomotion at an obstacle,Phys. Rev. E 73, 030901 (2006).Google Scholar
[60] S., Mariconda, Q., Wang, and R. M., Harshey, “A mechanical role for the chemotaxis system in swarming motility,Mol. Microbiol. 60, 1590–602 (2006).Google Scholar
[61] J. P., Armitage, T. P., Pitta, M. A.-S., Vigeant, H. L., Packer, and R. M., Ford, “Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed,J. Bacteriol. 181, 4825–33 (1999).Google Scholar
[62] T. R., Powers, “Role of body rotation in bacterial flagellar bundling,Phys. Rev. E 65, 040903 (2002).Google Scholar
[63] C., Takahashi, T., Nozawa, T., Tanikawa, Y., Nakagawa, J., Wakita, M., Matsushita, and T., Matsuyama, “Swarming ofPseudomonas aeruginosa pao1 without differentiation into elongated hyperflagellates on hard agar minimal medium,FEMS Microbiol. Lett. 280, 169–75 (2008).Google Scholar
[64] T., Sams, K., Sneppen, M., Jensen, C., Ellegaard, B., Christensen, and U., Thrane, “Morphological instabilities in a growing yeast colony: experiment and theory,Phys. Rev. Lett. 79, 313–16 (1997).Google Scholar
[65] D., Julkowska, M., Obuchowski, I. B., Holland, and S. J., Seror, “Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops,Microbiology 150, 1839–49 (2004).Google Scholar
[66] T. P., Robinson, J. W., Wimpenny, and R. G., Earnshaw, “pH gradients through colonies of Bacillus cereus and the surrounding agar,J. Gen. Microbiol. 137, 2885–9 (1991).Google Scholar
[67] A., Ouvry, R., Cachon, and C., Divies, “Application of microelectrode technique to measure pH and oxidoreduction potential gradients in gelled systems as model food,Biotechnol. Lett. 23, 1373–7 (2001).Google Scholar
[68] S., Walker, T., Brocklehurst, and J., Wimpenny, “The effects of growth dynamics upon pH gradient formation within and around subsurface colonies of Salmonella typhimurium,” J. Appl. Microbiol. 82, 610–14 (1997).Google Scholar
[69] J. W., Wimpenny and J. P., Coombs, “Penetration of oxygen into bacterial colonies,J. Gen. Microbiol. 129, 1239–42 (1983).Google Scholar
[70] A. C., Peters, J. W., Wimpenny, and J. P., Coombs, “Oxygen profiles in, and in the agar beneath, colonies of Bacillus cereus, Staphylococcus albus and Escherichia coli,J. Gen. Microbiol. 133, 1257–63 (1987).Google Scholar
[71] S., Belova, A., Dorofeev, and N., Panikov, “Growth and substrate utilization by bacterial lawn on the agar surface: experiment and one-dimensional distributed model,Microbiology 65, 690–4 (1996).Google Scholar
[72] D. B., Kearns, F., Chu, R., Rudner, and R., Losick, “Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility,Mol. Microbiol. 52, 357–69 (2004).Google Scholar
[73] W., Kim and M. G., Surette, “Metabolic differentiation in actively swarming Salmonella,” Mol. Microbiol. 54, 702–14 (2004).Google Scholar
[74] M., Saier, “Bacterial diversity and the evolution of differentiation,ASM News 66, 337–43 (2000).Google Scholar
[75] J. A., Shapiro, “Thinking about bacterial populations as multicellular organisms,Annu. Rev. Microbiol. 52, 81-104 (1998).Google Scholar
[76] C., Aguilar, H., Vlamakis, R., Losick, and R., Kolter, “Thinking about Bacillus subtilis as a multicellular organism,Curr. Opin. Microbiol. 10, 638–43 (2007).Google Scholar
[77] E. P., Greenberg, “Bacterial communication: tiny teamwork,Nature 424, 134 (2003).Google Scholar
[78] P., Stoodley, K., Sauer, D. G., Davies, and J. W., Costerton, “Biofilms as complex differentiated communities,Annu. Rev. Microbiol. 56, 187–209 (2002).Google Scholar
[79] E., Ben-Jacob, “Social behavior of bacteria: from physics to complex organization,Eur. Phys. J. B 65, 315–22 (2008).Google Scholar
[80] G. M., Odell and E. F., Keller, “Letter: traveling bands of chemotactic bacteria revisited,J. Theor. Biol. 56, 243–7 (1976).Google Scholar
[81] G. M., Odell and E. F., Keller, “Necessary and sufficient conditions for chemotactic bands,Math. Biosci. 27, 309–17 (1975).Google Scholar
[82] E. F., KellerandL. A., Segel, “Traveling bands of chemotactic bacteria: a theoretical analysis,J. Theor. Biol. 30, 235–48 (1971).Google Scholar
[83] E. F., Keller and L. A., Segel, “Initiation of slime mold aggregation viewed as an instability,J. Theor. Biol. 26, 399–415 (1970).Google Scholar
[84] K., Agladze, L., Budriene, G., Ivanitsky, V., Krinsky, V., Shakhbazyan, and M., Tsyganov, “Wave mechanisms of pattern formation in microbial populations,Proc. Biol. Sci. 253, 131–5 (1993).Google Scholar
[85] J., Adler, “The sensing of chemicals by bacteria,Sci. Am. 234, 40–7 (1976).Google Scholar
[86] S., Childress and J. K., Percus, “Nonlinear aspects of chemotaxis,Math. Biosci. 56, 217–37 (1981).Google Scholar
[87] D., Horstmann, “From 1970 until present: the Keller-Segel model in chemotaxis and its consequences,Jahresbericht der DMV 105, 103–65 (2003).Google Scholar
[88] T., Hillen and K. J., Painter, “A user's guide to PDE models for chemotaxis,J. Math. Biol. 58, 183–217 (2009).Google Scholar
[89] R., Tyson, S., Lubkin, and J., Murray, “A minimal mechanism for bacterial pattern formation,Proc. Nat. Acad. Sci. USA 266, 299–304 (1999).Google Scholar
[90] W., Alt, “Biased random walk models for chemotaxis and related diffusion approximations,J. Math. Biol. 9, 147–77 (1980).Google Scholar
[91] A., Stevens, “The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,SIAMJ. Appl. Math. 61, 183–212 (2000).Google Scholar
[92] M., Schnitzer, “Theory of continuum random walks and application to chemotaxis,Phys. Rev. E 48, 2553–68 (1993).Google Scholar
[93] K. C., Chen, R. M., Ford, and P. T., Cummings, “The global turning probability density function for motile bacteria and its applications,J. Theor. Biol. 195, 139–55 (1998).Google Scholar
[94] K. C., Chen, R. M., Ford, and P. T., Cummings, “Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency,J. Math. Biol. 47, 518–46 (2003).Google Scholar
[95] R., Erban and H., Othmer, “From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology,Multiscale Modeling and Simulation 3, 362–94 (2005).Google Scholar
[96] R., Erban and H., Othmer, “From individual to collective behavior in bacterial chemotaxis,SIAMJ. Appl. Math. 65, 361–91 (2004).Google Scholar
[97] T., Emonet, C. M., Macal, M. J., North, C. E., Wickersham, and P., Cluzel, “Agentcell: a digital single-cell assay for bacterial chemotaxis,Bioinformatics 21, 2714–21 (2005).Google Scholar
[98] I., Golding, Y., Kozlovsky, I., Cohen, and E., Ben-Jacob, “Studies of bacterial branching growth using reaction-diffusion models for colonial development,Physica A 260, 510–54 (1998).Google Scholar
[99] K., Kawasaki, A., Mochizuki, M., Matsushita, T., Umeda, and N., Shigesada, “Modeling spatio-temporal patterns generated by Bacillus subtilis,” J. Theor. Biol. 188, 177–85 (1997).Google Scholar
[100] D. A., Kessler and H., Levine, “Fluctuation-induced diffusive instabilities,Nature 394, 556–8 (1998).Google Scholar
[101] L. Z., Pipe and M. J., Grimson, “Spatial-temporal modelling of bacterial colony growth on solid media,Molecular Bio Systems 4, 192 (2008).Google Scholar
[102] Y., Kozlovsky, I., Cohen, I., Golding, and E., Ben-Jacob, “Lubricating bacteria model for branching growth of bacterial colonies,Phys. Rev. E 59, 7025–35 (1999).Google Scholar
[103] J., Lega and T., Passot, “Hydrodynamics of bacterial colonies: phase diagrams,Chaos 14, 562–70 (2004).Google Scholar
[104] J., Lega and T., Passot, “Hydrodynamics of bacterial colonies: a model,Phys. Rev. E 67, 031906 (2003).Google Scholar
[105] J., Lega and T., Passot, “Hydrodynamics of bacterial colonies,Nonlinearity 20, C1-C16 (2006).Google Scholar
[106] J. Y., Wakano, A., Komoto, and Y., Yamaguchi, “Phase transition of traveling waves in bacterial colony pattern,Phys. Rev. E 69, 051904 (2004).Google Scholar
[107] M., Mimura, H., Sakaguchi, and M., Matsushita, “Reaction-diffusion modelling of bacterial colony patterns,Physica A 282, 283–303 (2000).Google Scholar
[108] E., Ben-Jacob, H., Shmueli, O., Shochet, and A., Tenenbaum, “Adaptive self- organization during growth of bacterial colonies,Physica A 187, 378–424 (1992).Google Scholar
[109] E., Ben-Jacob, O., Schochet, A., Tenenbaum, I., Cohen, A., Czirok, and T., Vicsek, “Generic modelling of cooperative growth patterns in bacterial colonies,Nature 368, 46–9 (1994).Google Scholar
[110] E., Ben-Jacob, “From snowflake formation to growth of bacterial colonies. 2. cooperative formation of complex colonial patterns,Contemp. Phys. 38, 205–41 (1997).Google Scholar
[111] M., Ginovart, D., Lopez, J., Valls, and M., Silbert, “Individual based simulations of bacterial growth on agar plates,Physica A 305, 604–18 (2002).Google Scholar
[112] M., Badoual, P., Derbez, M., Aubert, and B., Grammaticos, “Simulating the migration and growth patterns of Bacillus subtilis,” Physica A 388, 549–59 (2009).Google Scholar
[113] T. A., Witten and L. M., Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,Phys. Rev. Lett. 47, 1400–3 (1981).Google Scholar
[114] E., Ben-Jacob, “From snowflake formation to growth of bacterial colonies. 1. diffusive patterning in azoic systems,Contemp. Phys. 34, 247–73 (1993).Google Scholar
[115] T., Vicsek, A., Czirok, E., Ben-Jacob, I., Cohen, and O., Shochet, “Novel type of phase transition in a system of self-driven particles,Phys. Rev. Lett. 75, 1226–9 (1995).Google Scholar
[116] H., Chate, F., Ginelli, G., Gregoire, and F., Raynaud, “Collective motion of self- propelled particles interacting without cohesion,Phys. Rev. E 77, 046113 (2008).Google Scholar
[117] F., Peruani, A., Deutsch, and M., Bar, “A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms,Eur. Phys. J. Spec. Top. 74, 030904 (2008).Google Scholar
[118] G., Gregoire, H., Chate, and Y., Tu, “Moving and staying together without a leader,Physica A 181, 157–70 (2003).Google Scholar
[119] H., Levine, W., Rappel, and I., Cohen, “Self-organization in systems of self- propelled particles,Phys. Rev. E 63, 017101 (2000).Google Scholar
[120] M., Ballerini, N., Cabibbo, R., Candelier, A., Cavagna, E., Cisbani, I., Giardina, A., Orlandi, G., Parisi, A., Procaccini, M., Viale, and V., Zdravkovic, “Empirical investigation of starling flocks: a benchmark study in collective animal behaviour,Anim. Behav. 76, 201–15 (2008).Google Scholar
[121] Q., Liao, G., Subramanian, M. P., Delisa, D. L., Koch, and M., Wu, “Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions,Phys. Fluids 19, 061701 (2007).Google Scholar
[122] L. J., Daniels, Y., Park, T., Lubensky, and D. J., Durian, “Dynamics of gas-fluidized granular rods,Phys. Rev. E 79, 041301 (2009).Google Scholar
[123] V., Narayan, S., Ramaswamy, and N., Menon, “Long-lived giant number fluctuations in a swarming granular nematic,Science 317, 105–8 (2007).Google Scholar
[124] N. C., Makris, P., Ratilal, S., Jagannathan, and Z., Gong, “Critical population density triggers rapid formation of vast oceanic fish shoals,Science 323, 1734–1737 (2009).Google Scholar
[125] B., Birnir, “An ODE model of the motion of pelagic fish,J. Stat. Phys. 128, 535–568 (2007).Google Scholar
[126] C., Becco, N., Vandewalle, J., Delcourt, and P., Poncin, “Experimental evidences of a structural and dynamical transition in fish school,Physica A 367, 487–93 (2006).Google Scholar
[127] J., Buhl, D., Sumpter, I. D., Couzin, J. J., Hale, E., Despland, E. R., Miller, and S. J., Simpson, “From disorder to order in marching locusts,Science 312, 1402–6 (2006).Google Scholar
[128] L., Edelstein-Keshet, J., Watmough, and D., Grunbaum, “Do travelling band solutions describe cohesive swarms? an investigation for migratory locusts,J. Math. Biol. 36, 51549 (1998).Google Scholar
[129] S., Gueron, “The dynamics of herds: from individuals to aggregations,J. Theor. Biol. 182, 85–98 (1996).Google Scholar
[130] J., Toner, Y., Tu, and S., Ramaswamy, “Hydrodynamics and phases of flocks,Ann. Phys. 318, 170–244 (2005).Google Scholar
[131] I., Giardina, “Collective behavior in animal groups: theoretical models and empirical studies,HFSP J. 2, 205–19 (2008).Google Scholar
[132] N., Sambelashvili, A. W. C., Lau, and D., Cai, “Dynamics of bacterial flow: emergence of spatiotemporal coherent structures,Phys. Lett. A 360, 507–11 (2007).Google Scholar
[133] S., Sankararaman and S., Ramaswamy, “Instabilities and waves in thin films of living fluids,Phys. Rev. Lett. 102, 118107 (2009).Google Scholar
[134] R., Simha and S., Ramaswamy, “Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles,Phys. Rev. Lett. 89, 058101 (2002).Google Scholar
[135] D., Saintillan and M. J., Shelley, “Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations,Phys. Rev. Lett. 100, 178103 (2008).Google Scholar
[136] D., Saintillan and M. J., Shelley, “Orientational order and instabilities in suspensions of self-locomoting rods,Phys. Rev. Lett. 99, 058102 (2007).Google Scholar
[137] A., Komoto, K., ichi Hanaki, S., Maenosono, J. Y., Wakano, Y., Yamaguchi, and K., Yamamoto, “Growth dynamics of Bacillus circulans colony,J. Theor. Biol. 225, 91–7 (2003).Google Scholar
[138] C. J., Ingham and E. B., Jacob, “Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells,BMC Microbiol. 8, 36 (2008).Google Scholar
[139] B., Szabo, G. J., Szollosi, B., Gonci, Z., Juranyi, D., Selmeczi, and T., Vicsek, “Phase transition in the collective migration of tissue cells: Experiment and model,Phys. Rev. E 74 (2006).Google Scholar
[140] A., Czirok, M., Matsushita, and T., Vicsek, “Theory of periodic swarming of bacteria: application to Proteus mirabilis,” Phys Rev E 63, 031915 (2001).Google Scholar
[141] S., Esipov and J., Shapiro, “Kinetic model of Proteus mirabilis swarm colony development,J. Math. Biol. 36, 249–68 (1998).Google Scholar
[142] B. P., Ayati, “A structured-population model of Proteus mirabilis swarm-colony development,J. Math. Biol. 52, 93-114 (2006).Google Scholar
[143] S., Arouh, “Analytic model for ring pattern formation by bacterial swarmers,Phys. Rev. E 63, 031908 (2001).Google Scholar
[144] J., Wakita, H., Shimada, H., Itoh, T., Matsuyama, and M., Matsushita, “Periodic colony formation by bacterial species Bacillus subtilis,” J. Phys. Soc. Jpn 70, 911 (2001).Google Scholar
[145] H., Shimada, T., Ikeda, J., Wakita, H., Itoh, S., Kurosu, F., Hiramatsu, M., Nakatsuchi, Y., Yamazaki, T., Matsuyama, and M., Matsushita, “Dependence of local cell density on concentric ring colony formation by bacterial species Bacillus subtilis,” J. Phys. Soc. Jpn 73, 1082–9 (2004).Google Scholar
[146] Itoh, J.Wakita, T.Matsuyama, , and M., Matsushita, “Periodic pattern formation of bacterial colonies,J. Phys. Soc. Jpn 68, 1436 (1999).CrossRefGoogle Scholar
[147] Q., Wang, J. G., Frye, M., McClelland, and R. M., Harshey, “Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes,Mol. Microbiol. 52, 169–87 (2004).Google Scholar
[148] S. A., Rani, B., Pitts, H., Beyenal, R. A., Veluchamy, Z., Lewandowski, W. M., Davison, K., Buckingham-Meyer, and P. S., Stewart, “Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states,J. Bacteriol. 189, 4223–33 (2007).Google Scholar
[149] A., McKay, A. C., Peters, and J., Wimpenny, “Determining specific growth rates in different regions of Salmonella typhimurium colonies,Lett. Appl. Microbiol. 24, 74–6 (1997).Google Scholar
[150] M. S., Mary, J., Gopal, B. V. R., Tata, T. S., Rao, and S., Vincent, “A confocal microscopic study on colony morphology and sporulation of Bacillus sp,World. J. Microbiol. Biotechnol. 24, 2435–2 (2008).Google Scholar
[151] E., Lahaye, T., Aubry, V., Fleury, and O., Sire, “Does water activity rule P. mirabilis periodic swarming? ii. viscoelasticity and water balance during swarming,Biomacromolecules 8, 1228–35 (2007).Google Scholar
[152] E., Bae, P. P., Banada, K., Huff, A. K., Bhunia, J. P., Robinson, and E. D., Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,J. Biomed. Optic. 13, 014010 (2008).Google Scholar
[153] P. P., Banada, S., Guo, B., Bayraktar, E., Bae, B., Rajwa, J. P., Robinson, E. D., Hirleman, and A. K., Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,Biosens. Bioelectron. 22, 1664–71 (2007).Google Scholar
[154] R. S., Kamath and H. R., Bungay, “Growth of yeast colonies on solid media,J. Gen. Microbiol. 134, 3061–9 (1988).Google Scholar
[155] H. C., Berg and D., Brown, “Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. addendum,Antibiot. Chemother. 19, 55–78 (1974).Google Scholar
[156] M., Wu, J. W., Roberts, S., Kim, D. L., Koch, and M. P., Delisa, “Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique,Appl. Environ. Microbiol. 72, 4987–94 (2006).Google Scholar
[157] E. B., Steager, C.-B., Kim, and M. J., Kim, “Dynamics of pattern formation in bacterial swarms,Phys. Fluids 20, 073601 (2008).Google Scholar
[158] C., Dombrowski, L., Cisneros, S., Chatkaew, R. E., Goldstein, and J. O., Kessler, “Self-concentration and large-scale coherence in bacterial dynamics,Phys. Rev. Lett. 93, 098103 (2004).Google Scholar
[159] M. B., Short, C. A., Solari, S., Ganguly, T. R., Powers, J. O., Kessler, and R. E., Goldstein, “Flows driven by flagella of multicellular organisms enhance long-range molecular transport,Proc. Nat. Acad. Sci. USA 103, 8315–19 (2006).Google Scholar
[160] N. H., Mendelson, A., Bourque, K., Wilkening, K. R., Anderson, and J. C., Watkins, “Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets,J. Bacteriol. 181, 600–9 (1999).Google Scholar
[161] D. B., Kearns and R., Losick, “Cell population heterogeneity during growth of Bacillus subtilis,” Gene. Dev. 19, 3083–94 (2005).Google Scholar
[162] N., Shaner, P., Steinbach, and R., Tsien, “A guide to choosing fluorescent proteins,Nat. Meth. 2, 905–9 (2005).Google Scholar
[163] H., Daims and M., Wagner, “Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis,Appl. Microbiol. Biotechnol. 75, 237–48 (2007).Google Scholar
[164] G. V., Bloemberg, A. H., Wijfjes, G. E., Lamers, N., Stuurman, and B. J., Lugtenberg, “Simultaneous imaging of Pseudomonas fluorescens wcs365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities,Mol. Plant Microbe Interact. 13, 1170–6 (2000).Google Scholar
[165] C., Ramos, L., Mølbak, and S., Molin, “Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates,Appl. Environ. Microbiol. 66, 801–9 (2000).Google Scholar
[166] S., Møller, C., Sternberg, J. B., Andersen, B. B., Christensen, J. L., Ramos, M., Givskov, and S., Molin, “In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members,Appl. Environ. Microbiol. 64, 721–32 (1998).Google Scholar
[167] E., Werner, F., Roe, A., Bugnicourt, M. J., Franklin, A., Heydorn, S., Molin, B., Pitts, and P. S., Stewart, “Stratified growth in Pseudomonas aeruginosa biofilms,Appl. Environ. Microbiol. 70, 6188–96 (2004).Google Scholar
[168] J., Keirsse, E., Lahaye, A., Bouter, V., Dupont, C., Boussard-Pledel, B., Bureau, J.-L., Adam, V., Monbet, and O., Sire, “Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies,Appl. Spectros. 60, 584–91 (2006).Google Scholar
[169] M., Gué, V., Dupont, A., Dufour, and O., Sire, “Bacterial swarming: a biochemical time-resolved FTIR-ATR study of Proteus mirabilis swarm-cell differentiation,Biochemistry 40, 11938–45 (2001).Google Scholar
[170] L. P., Choo-Smith, K., Maquelin, T., van Vreeswijk, H. A., Bruining, G. J., Puppels, N. A. N., Thi, C., Kirschner, D., Naumann, D., Ami, A. M., Villa, F., Orsini, S. M., Doglia, H., Lamfarraj, G. D., Sockalingum, M., Manfait, P., Allouch, and H. P., Endtz, “Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy,Appl. Environ. Microbiol. 67, 1461–9 (2001).Google Scholar
[171] K. C., Schuster, E., Urlaub, and J. R., Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,J. Microbiol. Meth. 42, 29–38 (2000).Google Scholar
[172] K., Maquelin, C., Kirschner, L.-P., Choo-Smith, N., van den Braak, H. P., Endtz, D., Naumann, and G. J., Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,J. Microbiol. Meth. 51, 255–71 (2002).Google Scholar
[173] M., Harz, P., Rösch, and J., Popp, “Vibrational spectroscopy – a powerful tool for the rapid identification of microbial cells at the single-cell level,Cytometry A 75, 104–13 (2009).Google Scholar
[174] P., Rosch, M., Harz, M., Schmitt, K.-D., Peschke, O., Ronneberger, H., Burkhardt, H.-W., Motzkus, M., Lankers, S., Hofer, H., Thiele, and J., Popp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,Appl. Environ. Microbiol. 71, 1626–37 (2005).Google Scholar
[175] A. M., Delprato, A., Samadani, A., Kudrolli, and L. S., Tsimring, “Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation,Phys. Rev. Lett. 87, 158102 (2001).Google Scholar
[176] T., Neicu, A., Pradhan, D. A., Larochelle, and A., Kudrolli, “Extinction transition in bacterial colonies under forced convection,Phys. Rev. E 62, 1059–62 (2000).Google Scholar
[177] R. G., Taylor and R. D., Welch, “Chemotaxis as an emergent property of a swarm,J. Bacteriol. 190, 6811–16 (2008).Google Scholar
[178] D., Debois, K., Hamze, V., Guerineau, J.-P. L., Caer, I. B., Holland, P., Lopes, J., Ouazzani, S. J., Seror, A., Brunelle, and O., Laprevote, “In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry,Proteomics 8, 3682–91 (2008).Google Scholar
[179] L., McCarter, M., Hilmen, and M., Silverman, “Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticusrCell 54, 345–51 (1988).Google Scholar
[180] L., McCarter and M., Silverman, “Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus,” Mol. Microbiol. 4, 1057–62 (1990).Google Scholar
[181] B. V., Jones, R., Young, E., Mahenthiralingam, and D. J., Stickler, “Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection,Infect. Immun. 72, 3941–50 (2004).Google Scholar
[182] A., Elfwing, Y., LeMarc, J., Baranyi, and A., Ballagi, “Observing growth and division of large numbers of individual bacteria by image analysis,Appl. Environ. Microbiol. 70, 675–8 (2004).Google Scholar
[183] A., Metris, Y. L., Marc, A., Elfwing, A., Ballagi, and J., Baranyi, “Modelling the variability of lag times and the first generation times of single cells of E. coli,” Int. J. Food Microbiol. 100, 13–19 (2005).Google Scholar
[184] Z., Kutalik, M., Razaz, A., Elfwing, A., Ballagi, and J., Baranyi, “Stochastic modelling of individual cell growth using flow chamber microscopy images,Int. J. Food Microbiol. 105, 177–90 (2005).Google Scholar
[185] J., Baranyi, S. M., George, and Z., Kutalik, “Parameter estimation for the distribution of single cell lag times,J. Theor. Biol. 259, 24–30 (2009).Google Scholar
[186] G. W., Niven, T., Fuks, J. S., Morton, S. A. C. G., Rua, and B. M., Mackey, “A novel method for measuring lag times in division of individual bacterial cells using image analysis,J. Microbiol. Meth. 65, 311–17 (2006).Google Scholar
[187] L., Guillier, P., Pardon, and J.-C., Augustin, “Automated image analysis of bacterial colony growth as a tool to study individual lag time distributions of immobilized cells,J. Microbiol. Meth. 65, 324–34 (2006).Google Scholar
[188] H. C., Berg and D. A., Brown, “Chemotaxis in Escherichia coli analysed by three-dimensional tracking,Nature 239, 500–4 (1972).Google Scholar
[189] S. M., Block, J. E., Segall, and H. C., Berg, “Impulse responses in bacterial chemotaxis,Cell 31, 215–26 (1982).Google Scholar
[190] J., Yuan, K. A., Fahrner, and H. C., Berg, “Switching of the bacterial flagellar motor near zero load,J. Mol. Biol. 390, 394–400 (2009).Google Scholar
[191] C., Patlak, “Random walk with persistence and external bias,Bull. Math. Biol. 15, 311–38 (1953).Google Scholar
[192] F., Chalub, P., Markowich, B., Perthame, and C., Schmeiser, “Kinetic models for chemotaxis and their drift-diffusion limits,Monatsh. Math. 142, 123–41 (2004).Google Scholar
[193] P., Lewus and R. M., Ford, “Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays,Biotechnol. Bioeng. 75, 292–304 (2001).Google Scholar
[194] M., Burkart, A., Toguchi, and R. M., Harshey, “The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli,” Proc. Nat. Acad. Sci. USA 95, 2568–73 (1998).Google Scholar
[195] I., Cohen, A., Czirok, and E., BenJacob, “Chemotactic-based adaptive self-organization during colonial development,Physica A 233, 678–98 (1996).Google Scholar
[196] H. C., Berg, “Bacterial behaviour,Nature 254, 389–92 (1975).Google Scholar
[197] N., Verstraeten, K., Braeken, B., Debkumari, M., Fauvart, J., Fransaer, J., Vermant, and J., Michiels, “Living on a surface: swarming and biofilm formation,Trends Microbiol. 16, 496–506 (2008).Google Scholar
[198] H. C., Berg and L., Turner, “Movement of microorganisms in viscous environments,Nature 278, 349–51 (1979).Google Scholar
[199] S., Nakamura, Y., Adachi, T., Goto, and Y., Magariyama, “Improvement in motion efficiency of the spirochete Brachyspira pilosicoli in viscous environments,Biophys. J. 90, 3019–26 (2006).Google Scholar
[200] M., Kim, J. C., Bird, A. J. V., Parys, K. S., Breuer, and T. R., Powers, “A macroscopic scale model of bacterial flagellar bundling,Proc. Nat. Acad. Sci. USA 100, 15481–5 (2003).Google Scholar
[201] T., Ishikawa and M., Hota, “Interaction of two swimming Paramecia,” J. Exp. Biol. 209, 4452–63 (2006).Google Scholar
[202] A. P., Berke, L., Turner, H. C., Berg, and E., Lauga, “Hydrodynamic attraction of swimming microorganisms by surfaces,Phys. Rev. Lett. 101, 038102 (2008).Google Scholar
[203] E., Lauga, W. R., Diluzio, G. M., Whitesides, and H. A., Stone, “Swimming in circles: motion of bacteria near solid boundaries,Biophys. J. 90, 400–12 (2006).Google Scholar
[204] E., Ben-Jacob, I., Cohen, O., Shochet, A., Tenenbaum, A., Czirok, and T., Vicsek, “Cooperative formation of chiral patterns during growth of bacterial colonies,Phys. Rev. Lett. 75, 2899–902 (1995).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×