Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T04:19:52.117Z Has data issue: false hasContentIssue false

6 - Discrete cell modeling

from Part I - Theory

Published online by Cambridge University Press:  05 October 2010

Vittorio Cristini
Affiliation:
University of Texas Health Science Center, Houston
John Lowengrub
Affiliation:
University of California, Irvine
Get access

Summary

In this chapter, we introduce discrete cancer-cell modeling, assess the strengths and weaknesses of the available discrete cell modeling approaches, sample the major discrete cell modeling approaches employed in current computational cancer modeling, and introduce a discrete agent-based cell modeling framework. This framework currently being developed by the present authors and collaborators will be used to implement the next-generation multiscale cancer-modeling framework detailed in Chapter 7.

A brief review of discrete modeling in cancer biology

Thus far we have discussed continuum modeling, in which cancer is modeled at the tissue scale and the effects of individual cells are averaged out. We now turn our attention to discrete models, in which the behavior of one or more individual cells as they interact with one another and the microenvironment is addressed.

Discrete modeling has enjoyed a long history in applied mathematics and biology, dating as far back as the 1940s when John von Neumann applied lattice crystal models to study the necessary rule sets for self-replicating robots. Perhaps the most famous early example of discrete biological modeling is John Conway's 1970 “game of life,” a two-dimensional rectangular lattice of “cells” that changed color according to rules based upon the colors of the neighboring cells. Even simple rules can lead to complex emergent behavior, and Conway's model was later shown to be Turing complete. Today, discrete cell modeling has advanced to study a broad swath of cancer biology, spanning carcinogenesis, tumor growth, invasion, and angiogenesis.

Type
Chapter
Information
Multiscale Modeling of Cancer
An Integrated Experimental and Mathematical Modeling Approach
, pp. 88 - 122
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×