Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T09:53:27.315Z Has data issue: false hasContentIssue false

26 - Computational Aspects of Prediction Markets

from IV - Additional Topics

Published online by Cambridge University Press:  31 January 2011

David M. Pennock
Affiliation:
School of Engineering and Applied Sciences Harvard University
Rahul Sami
Affiliation:
School of Information University of Michigan
Noam Nisan
Affiliation:
Hebrew University of Jerusalem
Tim Roughgarden
Affiliation:
Stanford University, California
Eva Tardos
Affiliation:
Cornell University, New York
Vijay V. Vazirani
Affiliation:
Georgia Institute of Technology
Get access

Summary

Abstract

Prediction markets (also known as information markets) are markets established to aggregate knowledge and opinions about the likelihood of future events. This chapter is intended to give an overview of the current research on computational aspects of these markets. We begin with a brief survey of prediction market research, and then give a more detailed description of models and results in three areas: the computational complexity of operating markets for combinatorial events; the design of automated market makers; and the analysis of the computational power and speed of a market as an aggregation tool. We conclude with a discussion of open problems and directions for future research.

Introduction: What Is a Prediction Market?

Consider the following mechanism design problem called the information aggregation problem. Suppose that an individual (“the aggregator”) would like to obtain a prediction about an uncertain variable, say the global average temperature in 2020. A number of individuals (“the informants”) each hold different and nonindependent sets of information bearing on the outcome of the variable. The goal is to design a mechanism that extracts the relevant information from the informants, aggregates the information appropriately, and provides a collective prediction or forecast. The forecast should ideally be equivalent to the omniscient forecast that has direct access to all the information available to all informants.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×