Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T17:41:34.241Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

S. A. Thorpe
Affiliation:
University of Wales, Bangor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. ;H. and Gregg, M. ;C. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16947–16 968. [137]CrossRefGoogle Scholar
Alford, M. and Pinkel, R. 2000. Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr., 30, 805–832. [138]2.0.CO;2>CrossRefGoogle Scholar
Andreas, E. ;L., Claffey, K. ;J., Jordan, R. ;E.et al. 2006. Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117–149. [107]CrossRefGoogle Scholar
Armi, L. and D'Asaro, E. 1980. Flow structures in the benthic ocean. J. Geophys. Res., 85, 469–484. [103, 106]CrossRefGoogle Scholar
Armi, L. and Farmer, D. ;M. 1988. The flow of Mediterranean water through the Strait of Gibraltar, Prog. Oceanogr., 21, 1–105. [150]Google Scholar
Armi, L. and Millard, R. ;C. 1976. The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 4983–4990. [222]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N.et al. 1989. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354–370. [189]2.0.CO;2>CrossRefGoogle Scholar
Ashford, O. ;M. 1985. Prophet or Professor? The Life And Work of Lewis Fry Richardson. Bristol: Adam Hilger Ltd. [140]Google Scholar
Batchelor, G. ;K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. [15]Google Scholar
Batchelor, G. 1996. The Life and Legacy of G. ;I. Taylor. Cambridge: Cambridge University Press. [51]Google Scholar
Bowden, K. ;F. and Fairbairn, L. ;A. 1956. Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proc. Roy. Soc. Lond. A, 237, 422–438. [67, 69, 73]CrossRefGoogle Scholar
Brown, G. ;L. and Roshko, A. 1974. On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816. [38]CrossRefGoogle Scholar
Brügge, B. 1995. Near-surface mean circulation and kinetic energy in the central North Atlantic from drifter data. J. Geophys. Res., 100, 20543–20 554. [175]CrossRefGoogle Scholar
Bryden, H. and Nurser, A. ;J. G 2003. Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 1870–1872. [220, 223]2.0.CO;2>CrossRefGoogle Scholar
Caldwell, D. ;R. and Chriss, T. ;M. 1979. The viscous boundary layer at the sea floor. Science, 205, 1131–1132. [114, 115]CrossRefGoogle Scholar
Cardwell, D. ;S. L 1989. James Joule, a Biography. Manchester: Manchester University Press. [6]Google Scholar
Carter, G. ;S. and Gregg, M. ;C. 2002. Intense, variable mixing near the head of the Monterey submarine canyon. J. Phys. Oceanogr., 32, 3145–3165. [220]2.0.CO;2>CrossRefGoogle Scholar
Chriss, T. ;M. and Caldwell, D. ;R. 1982. Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res., 87, 4148–4154. [87, 106]CrossRefGoogle Scholar
Csanady, G. ;T. 1973. Turbulent Diffusion in the Environment. Dordrecht: Reidel. [195]CrossRefGoogle Scholar
D'Asaro, E. ;A. 2001. Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537. [55]2.0.CO;2>CrossRefGoogle Scholar
D'Asaro, E. ;A. and Lien, R. ;C. 2000. Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30, 641–655. [55]2.0.CO;2>CrossRefGoogle Scholar
Davis, R. ;E. 1987. Modelling eddy transport of passive tracers. J. Mar. Res., 45, 635–666. [190]CrossRefGoogle Scholar
Davis, R. ;E. 1991a. Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 43–64. [190]CrossRefGoogle Scholar
Davis, R. ;E. 1991b. Observing the general circulation with floats. Deep-Sea Res., 38, S531–S571. [190]CrossRefGoogle Scholar
Davis, R. ;E., Szoeke, R., Halpern, D. and Niiler, P. 1981. Variability in the upper ocean during MILE. Part 1: the heat and momentum budgets. Deep-Sea Res., 28, 1427–1451. [127]CrossRefGoogle Scholar
Drazin, P. ;G. and Reid, W. ;H. 1981. Hydrodynamic Stability. Cambridge: Cambridge University Press. [150]Google Scholar
Durst, F. and Ünsal, B. 2006. Forced laminar-to-turbulent transition of pipe flows. J. Fluid Mech., 560, 449–464. [32]CrossRefGoogle Scholar
Eckart, C. 1948. An analysis of the stirring and mixing in incompressible fluids. J. Mar. Res., 7, 265–275. [13, 32]Google Scholar
Egbert, G. ;D. and Ray, R. ;D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22475–22 502. [219]CrossRefGoogle Scholar
Ellison, T. ;H. and Turner, J. ;S. 1959. Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423–448. [133]CrossRefGoogle Scholar
Eriksen, C. ;C. 1978. Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–3009. [127]CrossRefGoogle Scholar
Faller, A. ;J. and Auer, S. ;J. 1988. The role of Langmuir circulation in the dispersion of surface tracers. J. Phys. Oceanogr., 18, 1108–1123. [196]2.0.CO;2>CrossRefGoogle Scholar
Ferron, B., Mercier, H., Speer, K., Gargett, A. and Polzin, K. 1998. Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945. [130, 220]2.0.CO;2>CrossRefGoogle Scholar
Fringer, O. ;B. and Street, R. ;L. 2003. The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494, 319–353. [126, 153]CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data-transport. Nature, 408, 453–457. [141]CrossRefGoogle Scholar
Gargett, A. ;E. 1999. Velcro measurements of turbulent kinetic energy dissipation rate, ε. J. Atmos. Oceanic Technol., 16, 1973–1993. [74]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. ;E., Osborn, T. ;R. and Naysmth, P. ;W. 1984. Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280. [75]CrossRefGoogle Scholar
Gill, A. ;E. 1981. Homogeneous intrusions in a rotating stratified fluid. J. Fluid Mech., 103, 275–295. [32]CrossRefGoogle Scholar
Gill, A. ;E. 1982. Atmosphere–Ocean Dynamics. London: Academic Press. [6, 21, 22, 32, 157]Google Scholar
Graf, G. 1989. Benthic–pelagic coupling in a deep-sea benthic community. Nature, 341, 439–441. [113]CrossRefGoogle Scholar
Grant, H. ;L., Moilliet, A. and Vogel, W. ;M. 1968. Some observations of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–448. [74, 117]CrossRefGoogle Scholar
Grant, H. ;L., Stewart, R. ;W. and Moilliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–268. [60, 61, 74]CrossRefGoogle Scholar
Gregg, M. ;C. 1980. Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915–943. [58]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. ;C. 1987. Diapycnal mixing in a thermocline: a review. J. Geophys. Res., 92, 5249–5286. [150]CrossRefGoogle Scholar
Gregg, M. ;C. 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698. [152]CrossRefGoogle Scholar
Gregg, M. ;C. 1999. Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanogr. Technol., 16, 1483–1490. [62, 74]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. ;C. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513–515. [153]CrossRefGoogle ScholarPubMed
Gregg, M. ;C., Carter, G. ;S. and Kunze, E. 2005. Corrigendum. J. Phys. Oceanogr., 35, 1712–1715. [220]CrossRefGoogle Scholar
Griffiths, R. ;W. and Linden, P. ;F. 1981. The stability of vortices in a rotating stratified fluid. J. Fluid Mech., 105, 283–316. [32]CrossRefGoogle Scholar
Heathershaw, A. ;D. 1979. The turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. Roy. Astron. Soc., 58, 395–430. [71]CrossRefGoogle Scholar
Hickey, B. ;M. and T. ;C. Royer 2001. California and Alaska Currents. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 1. London: Academic Press, pp. 368–379. [177]Google Scholar
Hinze, J. ;O. 1959. Turbulence. New York: McGraw-Hill. [74]Google Scholar
Hogg, N., Biscaye, P., Gardner, W. and Schmitz, W. ;J. 1982. On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (suppl), 231–263. [155]Google Scholar
Howard, L. ;N. 1961. Note on a paper by John W. Miles. J. Fluid Mech., 10, 509–512. [119, 150]CrossRefGoogle Scholar
Huang, R. ;X. 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746. [219]2.0.CO;2>CrossRefGoogle Scholar
Huppert, H. ;E. and Turner, J. ;S. 1981. Double-diffusive convection. J. Fluid Mech., 106, 299–329. [147]CrossRefGoogle Scholar
Hunt, G. ;N. 1985. Radioactivity in Coastal and Surface Waters of the UK. Aquatic Environment Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft. [191]
Hunt, J. ;C. R, Pacheco, J. ;R., Mahalov, A. and Fernando, H. ;J. S 2005. Effects of rotation and sloping terrain on the fronts of density currents. J. Fluid Mech., 537, 285–315. [32]CrossRefGoogle Scholar
Joule, J. ;P. 1850. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. Lond., 140 (1), 61–82 (also in Scientific Papers, published by Taylor and Francis for the Physical Society of London, 1884, pp. 298–328). [6, 32]CrossRefGoogle Scholar
Karpen, V., Thomsen, L. and Suess, E. 2004. A new ‘schlieren’ technique application for fluid flow visualisation at cold seep sites. Mar. Geol., 204, 145–159. [74]CrossRefGoogle Scholar
Kunze, E. 2001. Vortical modes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3174–3178. [192]Google Scholar
Kunze, E., Williams, A. ;J. III and Schmitt, R. ;W. 1987. Optical microstructure in the thermohaline staircase east of Barbados. Deep-Sea Res., 34, 1697–1704. [74, 150]CrossRefGoogle Scholar
Kunze, E., Briscoe, M. ;G. and Williams, A. ;J. III 1990. Interpreting shear and strain from a neutrally buoyant float. J. Geophys. Res., 95, 18111–18 125. [152]Google Scholar
Kunze, E., Firing, E., Hummon, J. ;M., Chereskin, T. ;K. and Thurnherr, A. ;M. 2006. Global abyssal mixing inferred from lowered acoustic Doppler current profiler shear and conductivity–temperature–depth probe strain profiles. J. Phys. Oceanogr., 36, 1553–1576. [152]CrossRefGoogle Scholar
Lamarre, E. and Melville, W. ;K. 1994. Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 1317–1329. [33]CrossRefGoogle Scholar
Langmuir, I. 1938. Surface motion of water induced by wind. Science, 87, 119–123. [95, 107]CrossRefGoogle ScholarPubMed
Ledwell, J. ;R., Watson, A. ;J. and Laws, C. ;S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res., 108, 21499–21 529. [143, 150, 183, 184, 189]Google Scholar
Lee, C. ;M., Kunze, E., Sanford, T. ;B.et al. 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183. [220]CrossRefGoogle Scholar
Leibovich, S. 1983. The form and dynamics of Langmuir circulation. Annu. Rev. Fluid Dyn., 15, 391–427. [107]CrossRefGoogle Scholar
Levitus, S., Antonov, J. and Boyer, D. 2005. The warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. [207]CrossRefGoogle Scholar
Lien, R.-C. and Gregg, M. ;C. 2001. Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591. [136]CrossRefGoogle Scholar
Lu, Y. and Lueck, R. ;G. 1999. Using broadband acoustic Doppler current profiler in a tidal channel. Part II: turbulence. J. Atmos. Oceanic Technol., 14, 1568–1579. [74]2.0.CO;2>CrossRefGoogle Scholar
Lumkin, R., Treguier, A.-M. and Speer, K. 2002. Lagrangian eddy scales in the North Atlantic Ocean. J. Phys. Oceanogr., 32, 2426–2 440. [190]Google Scholar
Lupton, J. ;E. 1995. Hydrothermal plumes: near and far field. In Seafloor Hydrothermal Systems. Physical, Chemical, Biological and Geological Interactions. Washington, DC: American Geophysical Union, pp. 317–346. [159]Google Scholar
McClean, J. ;L., Poulain, P.-M. and Pelton, J. ;W. 2002. Eulerian and Lagrangian statistics from surface drifters and high-resolution POP simulation in the North Atlantic. J. Geophys. Res., 22, 2472–2 491. [190]Google Scholar
MacKinnon, J. ;A. and Gregg, M. ;C. 2003. Mixing on the late-summer New England Shelf – solibores, shear and stratification. J. Phys. Oceanogr., 33, 1476–1492. [152]2.0.CO;2>CrossRefGoogle Scholar
, McWilliams J. ;C., Sullivan, P. ;P. and Moeng, C.-H. 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334, 31–58. [107]Google Scholar
Maxey, M. ;R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465. [192]CrossRefGoogle Scholar
Melville, W. ;K. 1996. The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28, 279–321. [109, 219]CrossRefGoogle Scholar
Melville, W. ;K. and Matusov, P. 2002. Distribution of breaking waves at the ocean surface. Nature, 417, 58–63. [219]CrossRefGoogle ScholarPubMed
Miles, J. 1961. On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508. [119, 150]CrossRefGoogle Scholar
Miles, J. ;W. and Howard, L. ;N. 1964. Note on a heterogeneous shear layer. J. Fluid Mech., 20, 331–336. [120]CrossRefGoogle Scholar
Morris, M. ;Y., Hall, M. ;M., Laurent, L. ;C. St. and Hogg, N. ;G. 2001. Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31, 3331–3348. [155]2.0.CO;2>CrossRefGoogle Scholar
Morton, B. ;R., Taylor, G. ;I. and Turner, J. ;S. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. Lond. A, 234, 1–13. [83, 106, 110]CrossRefGoogle Scholar
Moum, J. ;N. and W. ;D. Smyth 2001. Upper ocean mixing processes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3093–3100. [107]Google Scholar
Moum, J. ;N., Gregg, M. ;C., Lien, R.-C. and Carr, M.-E. 1995. Comparison of turbulent kinetic energy dissipation rates from two microstructure profilers. J. Atmos. Oceanic Technol., 12, 346–366. [46, 64, 74]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. ;M., Farmer, D. ;M., Smyth, W. ;D., Armi, L. and Vagle, S. 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112. [26]2.0.CO;2>CrossRefGoogle Scholar
Mowbray, D. ;E. and Rarity, B. ;S. H 1967. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16. [27]CrossRefGoogle Scholar
, Munk W. 1966. Abyssal recipes. Deep-Sea Res., 13, 207–230. [140, 141, 150]Google Scholar
, Munk W. 1997. Once again: once again – tidal friction. Prog. Oceanogr., 40, 7–35. [219]CrossRefGoogle Scholar
Munk, W. and Wunsch, C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1976–2009. [150, 219]CrossRefGoogle Scholar
Smith, Nimmo W. ;A. M, Thorpe, S. ;A. and Graham, A. 1999. Surface effects of bottom-generated turbulence in a shallow sea. Nature, 400, 251–254. [12]CrossRefGoogle Scholar
Smith, Nimmo W. ;A. M, Katz, J. and Osborn, T. ;R. 2005. On the structure of turbulence in the bottom boundary layer of the coastal ocean. J. Phys. Oceanogr., 35, 72–93. [44]CrossRefGoogle Scholar
Nycander, J. 2005. Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110 (C10), C10028, doi:10.1029/2004JC002487. [219]CrossRefGoogle Scholar
Oakey, N. ;S. 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271. [74]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. ;S. 2001. Turbulence sensors. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3063–3069. [74]Google Scholar
Okubo, A. 1971. Oceanic diffusion diagrams. Deep-Sea Res., 18, 789–802. [181, 182, 189]Google Scholar
Ollitrault, M., Gabillet, C. and Verdière, A. ;C. 2005. Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381–407. [190]CrossRefGoogle Scholar
Osborn, T. ;R. 1974. Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115. [62]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. ;R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89. [132]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. ;R. and Cox, C. ;S. 1972. Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345. [131]CrossRefGoogle Scholar
Ozmidov, R. ;V. 1965. On the turbulent exchange in a stably stratified ocean. Izvestia Acad. Sci. U.S.S.R., Atmos. & Ocean Phys., 1, 861–871. [129, 182]Google Scholar
Park, P. ;K., Kester, D. ;R., Duedall, I. ;W. and Ketchum, B. ;H. 1983. Radioactive wastes and the ocean. In Wastes in the Ocean, ed. P. ;K. Park et al., vol. 3. New York: John Wiley and Sons, pp. 4–46. [192]Google Scholar
Pasquill, F. 1962. Atmospheric Diffusion. Toronto: D. van Nostrand Co. Ltd. [193]Google Scholar
Peters, H., Gregg, M. ;C. and Toole, J. ;M. 1988. On the parametrization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218. [153]CrossRefGoogle Scholar
Polzin, K. 1996. Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr., 26, 1409–1425. [128, 152]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K., Speer, K. ;G., Toole, J. ;M. and Schmitt, R. ;W. 1996. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–56. [215]CrossRefGoogle Scholar
Polzin, K. ;L., Toole, J. ;M., Ledwell, J. ;R. and Schmitt, R. ;W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. [150]CrossRefGoogle ScholarPubMed
Proudman, J. 1953. Dynamical Oceanography. London: Methuen & Co. Ltd. [149]Google Scholar
Rapp, R. ;J. and Melville, W. ;K. 1990. Laboratory measurements of deep-water breaking waves. Phil. Trans. Roy. Soc. Lond. A, 331, 735–800. [32]CrossRefGoogle Scholar
Ray, R. ;D. and Mitchem, G. ;T. 1997. Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162. [202]CrossRefGoogle Scholar
Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. A, 174, 935–982 (also in Scientific Papers (1901), 2, 51–105). [3, 32]CrossRefGoogle Scholar
Reynolds, O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. Lond. A, 186, 123–164 (also in Scientific Papers (1901), 2, 535–577). [39]CrossRefGoogle Scholar
Reynolds, O. 1900. On the action of rain to calm the sea. In Papers on Mechanical and Physical Subjects, vol. 1. Cambridge: Cambridge University Press, pp. 86–88. [40]Google Scholar
Rhines, P. ;B. 1979. Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401–411. [192]CrossRefGoogle Scholar
Richardson, L. ;F. and Stommel, H. 1948. Note on eddy diffusion in the sea. J. Meteorol., 5, 238–240. [189]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. ;L., Bowers, A. ;S. and Zenk, W. 2000. A census of Meddies tracked by floats. Prog. Oceanogr., 45, 209–250. [159]CrossRefGoogle Scholar
Rossby, H. ;T., S. ;C. Riser and A. ;J. Mariano 1983. The western North Atlantic – a Lagrangian viewpoint. In Eddies in Marine Science, ed. Robinson, A. ;R.. Berlin: Springer-Verlag, pp. 66–91. [190]CrossRefGoogle Scholar
Rossby, T. and Webb, D. 1970. Observing abyssal motions by tracking Swallow floats in the SOund Fixing And Ranging channel. Deep-Sea Res., 17, 359–365. [179, 190]Google Scholar
Rudnick, D. ;L., Boyd, T. ;J., Brainard, R. ;E.et al. 2003. From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357. [219]CrossRefGoogle ScholarPubMed
St. Laurent, L. and Schmitt, R. ;W. 1999. The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 1404–1424. [149]2.0.CO;2>CrossRefGoogle Scholar
St. Laurent, L. ;C., Toole, J. ;M. and Schmitt, R. ;W. 2001. Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495. [144, 203]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. ;M. 1987. Flow through Discovery Gap. J. Phys. Oceanogr., 17, 631–643. [155]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. ;W. 1981. Form of the temperature–salinity relationship in the Central Water: evidence of double-diffusive mixing. J. Phys. Oceanogr., 11, 1015–1026. [148]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. ;W. 2001. Double-diffusive convection. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 757–766. [150]Google Scholar
Schmitt, R. ;W. and J. ;R. Ledwell 2001. Dispersion and diffusion in the deep ocean. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 726–733. [186]Google Scholar
Schott, F., Visbeck, M., Send, U.et al. 1996. Observations of deep convection in the Gulf of Lions, northern Mediterranean, during winter of 1991/2. J. Phys. Oceanogr., 26, 505–524. [107]2.0.CO;2>CrossRefGoogle Scholar
Sharples, J. and J. ;H. Simpson 2001. Shelf-sea and slope fronts. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 5. London: Academic Press, pp. 2760–2768. [109]Google Scholar
Shay, T. ;J. and Gregg, M. ;C. 1984a. Turbulence in an oceanic convective layer. Nature, 310, 282–285. [107]CrossRefGoogle Scholar
Shay, T. ;J. and Gregg, M. ;C. 1984b. Turbulence in an oceanic convective layer – corrigendum. Nature, 311, 84. [92, 107]CrossRefGoogle Scholar
Shay, T. ;J. and Gregg, M. ;C. 1986. Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798. [93, 107]2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. ;H. 1998. Tidal processes in shelf seas. In The Sea, vol. 10, ed. Brink, K. ;H. and Robinson, R.. New York: John Wiley and Sons, pp. 113–150. [109]Google Scholar
Simpson, J. ;H., Brown, J., Matthews, J. and Allen, G. 1990. Tidal straining, density currents and stirring in the control of estuarine stratification. Estuaries, 13, 125–132. [109]CrossRefGoogle Scholar
Simpson, J. ;H., T. ;P. Rippeth and A. ;R. Campbell 2000. The phase lag of turbulent dissipation in tidal flow. In Interactions between Estuaries, Coastal Seas and Shelf Seas, ed. Yanagi, T.. Tokyo: Terr Scientific Publishing Co. (TERRAPUB), pp. 57–67. [109]Google Scholar
Smyth, W. ;D. and Moum, J. ;N. 2000. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 1343–1362. [75, 124]CrossRefGoogle Scholar
Smyth, W. ;D. and Winters, K. ;B. 2003. Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr., 33, 694–711. [151]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. ;D., Hebert, D. and Moum, J. ;N. 1996. Local ocean response to a multiphase westerly wind burst 2. Thermal and freshwater responses. J. Geophys. Res., 101 (C10), 22513–22 533. [94]Google Scholar
Smyth, W. ;D., Zavialov, P. ;O. and Moum, J. ;N. 1997. Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810–822. [112]2.0.CO;2>CrossRefGoogle Scholar
Sparrow, E. ;M., Husar, R. ;B. and Goldstein, R. ;J. 1970. Observations and other characteristics of thermals. J. Fluid Mech., 41, 793–800. [82]CrossRefGoogle Scholar
Spelt, P. ;D. M and Biesheuvel, A. 1997. On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336, 221–244. [192]CrossRefGoogle Scholar
Staquet, C. and Sommeria, J. 2002. Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559–593. [150]CrossRefGoogle Scholar
Stern, M. ;E. 1960. The ‘salt fountain’ and thermohaline convection. Tellus, 12, 172–175. [145]CrossRefGoogle Scholar
Stephens, J. ;C. and Marshall, D. ;P. 2000. Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622–640. [213]2.0.CO;2>CrossRefGoogle Scholar
Stommel, H. 1949a. Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199–225. [189]Google Scholar
Stommel, H. 1949b. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8, 24–29. [173]Google Scholar
Stommel, H., Arons, A. ;B. and Blanchard, D. 1956. An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. [145, 150]Google Scholar
Strang, E. ;J. and Fernando, H. ;J. S 2001. Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349–386. [150]CrossRefGoogle Scholar
Sundermeyer, M. ;A. and LeLong, M. ;P. 2005. Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. J. Phys. Oceanogr., 35, 2368–2386. [192]CrossRefGoogle Scholar
Sundermeyer, M. ;A., Ledwell, J. ;R., Oakey, N. ;S. and Greenan, B. ;J. W 2005. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 1245–1262. [36, 192]CrossRefGoogle Scholar
Tait, R. ;I. and Howe, M. ;R. 1971. Thermohaline staircases. Nature, 231, 178–179. [150]CrossRefGoogle Scholar
Taylor, G. ;I. 1919. Tidal friction in the Irish Sea. Phil. Trans. R. Soc. Lond. A, 220, 1–92. [33, 70, 73, 201, 219]CrossRefGoogle Scholar
Taylor, G. ;I. 1931. Internal waves and turbulence in a flud of variable density. Rapp. et Proc.-Verb. des Réunions du Conseil Perm. Int. pour l'Expl. de la Mer, 76, 35–42 (also in Scientific Papers 1960, ed. Batchelor, G. ;K., vol. 2, pp. 240–246). [133, 149]Google Scholar
Taylor, G. ;I. 1959. The present position in the theory of turbulent diffusion. In Atmospheric Diffusion and Air Pollution, ed. Frenkiel, F. ;N. and Shephard, P. ;A.. London: Academic Press, pp. 101–112. [193]Google Scholar
Tennekes, H. and Lumley, J. ;L. 1982. A First Course in Turbulence, 2nd edn. Cambridge, MA: MIT Press. [74]Google Scholar
Thorpe, S. ;A. 1968. A method of producing a shear flow in a stratified fluid. J. Fluid Mech., 32, 693–704. [151]CrossRefGoogle Scholar
Thorpe, S. ;A. 1971. Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech., 46, 299–319. [122]CrossRefGoogle Scholar
Thorpe, S. ;A. 1985. Small-scale processes in the upper ocean boundary layer. Nature, 318, 5l9–522. [97, 101]CrossRefGoogle Scholar
Thorpe, S. ;A. 1995. On the meandering and dispersion of a plume of floating particles caused by Langmuir circulation and a mean current. J. Phys. Oceanogr., 25, 685–690. [164, 195]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. ;A. 2004. Langmuir circulation. Annu. Rev. Fluid Dyn., 36, 55–79. [107]CrossRefGoogle Scholar
Thorpe, S. ;A. 2005. The Turbulent Ocean. Cambridge: Cambridge University Press (referred to as The Turbulent Ocean by S. A.Thorpe, Cambridge University Press, 2005). [i, ix, 6, 21, 33, 75, 109, 152, 192, 220]CrossRefGoogle Scholar
Thorpe, S. ;A. and Hall, A. ;J. 1980. The mixing layer of Loch Ness. J. Fluid Mech., 101, 687–703. [100]CrossRefGoogle Scholar
Thorpe, S. ;A., Osborn, T. ;R., Jackson, J. ;F. E, Hall, A. ;J. and Lueck, R. ;G. 2003. Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122–145. [66, 68]2.0.CO;2>CrossRefGoogle Scholar
Thurnherr, A. ;M., , L. ;C. Laurent St., Speer, K. ;G., Toole, J. ;M. and Ledwell, J. ;R. 2005. Mixing associated with sills in a canyon on the mid-ocean ridge flank. J. Phys. Oceanogr., 35, 1370–1381. [220]CrossRefGoogle Scholar
Toggweiler, J. ;R. and R. ;M. Key 2001. Thermohaline circulation. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 2941–2947. [141]Google Scholar
Troy, C. ;D. and Koseff, J. ;R. 2005. The instability and breaking of long internal waves. J. Fluid Mech., 543, 107–136. [119]CrossRefGoogle Scholar
Turner, J. ;S. 1973. Buoyancy Effects in Fluids. Cambridge: Cambridge University Press. [106, 149, 150]CrossRefGoogle Scholar
Veron, F. and Melville, W. ;K. 2001. Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 25–65. [107, 108]Google Scholar
Wang, W. and Huang, R. ;X. 2004. Wind energy input to surface waves. J. Phys. Oceanogr., 34, 1276–1280. [219]2.0.CO;2>CrossRefGoogle Scholar
Welander, P. 1955. Studies of the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156. [14, 32]CrossRefGoogle Scholar
Wesson, J. ;C. and Gregg, M. ;C. 1994. Mixing at the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878. [46, 53, 140, 150]CrossRefGoogle Scholar
Wijesekera, H. and T. ;J. Boyd 2001. Upper ocean heat and freshwater budgets. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3079–3083. [96]Google Scholar
Williams, A. ;J. 1975. Images of ocean microstructure. Deep-Sea Res., 22, 811–829. [74]Google Scholar
Wimbush, M. 1970. Temperature gradient above the deep-sea floor. Nature, 227, 1041–1043. [106]CrossRefGoogle Scholar
Wimbush, M. and Munk, W. 1971. The benthic boundary layer. In The Sea, ed. A. ;E. Maxwell, vol. 4(1). New York: John Wiley and Sons, pp. 731–758. [106]Google Scholar
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;B. 1996. Resolving oceanic shear and velocity with the Multi-Scale Profiler. J. Atmos. Oceanic Technol., 13, 1046–1072. [74]2.0.CO;2>CrossRefGoogle Scholar
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;H. 2002. Patterns of shear and turbulence across the Florida Current. J. Phys. Oceanogr., 32, 3269–3285. [46, 134]2.0.CO;2>CrossRefGoogle Scholar
Woods, J. ;D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791–800. [118, 149]CrossRefGoogle Scholar
Wunsch, C. 2001. Inverse models. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 3. London: Academic Press, pp. 1368–1374. [220]Google Scholar
Wunsch, C. and Ferrari, R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281–314. [200, 218, 219, 220]CrossRefGoogle Scholar
Yaglom, A. ;M. 1994. A. ;N. Kolmogorov as a fluid mechanician and founder of a school of turbulence research. Annu. Rev. Fluid Mech., 26, 1, 22. [48]CrossRefGoogle Scholar
Zhurbas, V. and Oh, I. ;S. 2004. Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109 (C5), C05015, doi:10.1029/2003JC002241. [178, 190]CrossRefGoogle Scholar
Alford, M. ;H. and Gregg, M. ;C. 2001. Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16947–16 968. [137]CrossRefGoogle Scholar
Alford, M. and Pinkel, R. 2000. Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr., 30, 805–832. [138]2.0.CO;2>CrossRefGoogle Scholar
Andreas, E. ;L., Claffey, K. ;J., Jordan, R. ;E.et al. 2006. Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117–149. [107]CrossRefGoogle Scholar
Armi, L. and D'Asaro, E. 1980. Flow structures in the benthic ocean. J. Geophys. Res., 85, 469–484. [103, 106]CrossRefGoogle Scholar
Armi, L. and Farmer, D. ;M. 1988. The flow of Mediterranean water through the Strait of Gibraltar, Prog. Oceanogr., 21, 1–105. [150]Google Scholar
Armi, L. and Millard, R. ;C. 1976. The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 4983–4990. [222]CrossRefGoogle Scholar
Armi, L., Hebert, D., Oakey, N.et al. 1989. Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354–370. [189]2.0.CO;2>CrossRefGoogle Scholar
Ashford, O. ;M. 1985. Prophet or Professor? The Life And Work of Lewis Fry Richardson. Bristol: Adam Hilger Ltd. [140]Google Scholar
Batchelor, G. ;K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press. [15]Google Scholar
Batchelor, G. 1996. The Life and Legacy of G. ;I. Taylor. Cambridge: Cambridge University Press. [51]Google Scholar
Bowden, K. ;F. and Fairbairn, L. ;A. 1956. Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proc. Roy. Soc. Lond. A, 237, 422–438. [67, 69, 73]CrossRefGoogle Scholar
Brown, G. ;L. and Roshko, A. 1974. On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775–816. [38]CrossRefGoogle Scholar
Brügge, B. 1995. Near-surface mean circulation and kinetic energy in the central North Atlantic from drifter data. J. Geophys. Res., 100, 20543–20 554. [175]CrossRefGoogle Scholar
Bryden, H. and Nurser, A. ;J. G 2003. Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 1870–1872. [220, 223]2.0.CO;2>CrossRefGoogle Scholar
Caldwell, D. ;R. and Chriss, T. ;M. 1979. The viscous boundary layer at the sea floor. Science, 205, 1131–1132. [114, 115]CrossRefGoogle Scholar
Cardwell, D. ;S. L 1989. James Joule, a Biography. Manchester: Manchester University Press. [6]Google Scholar
Carter, G. ;S. and Gregg, M. ;C. 2002. Intense, variable mixing near the head of the Monterey submarine canyon. J. Phys. Oceanogr., 32, 3145–3165. [220]2.0.CO;2>CrossRefGoogle Scholar
Chriss, T. ;M. and Caldwell, D. ;R. 1982. Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res., 87, 4148–4154. [87, 106]CrossRefGoogle Scholar
Csanady, G. ;T. 1973. Turbulent Diffusion in the Environment. Dordrecht: Reidel. [195]CrossRefGoogle Scholar
D'Asaro, E. ;A. 2001. Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537. [55]2.0.CO;2>CrossRefGoogle Scholar
D'Asaro, E. ;A. and Lien, R. ;C. 2000. Lagrangian measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr., 30, 641–655. [55]2.0.CO;2>CrossRefGoogle Scholar
Davis, R. ;E. 1987. Modelling eddy transport of passive tracers. J. Mar. Res., 45, 635–666. [190]CrossRefGoogle Scholar
Davis, R. ;E. 1991a. Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 43–64. [190]CrossRefGoogle Scholar
Davis, R. ;E. 1991b. Observing the general circulation with floats. Deep-Sea Res., 38, S531–S571. [190]CrossRefGoogle Scholar
Davis, R. ;E., Szoeke, R., Halpern, D. and Niiler, P. 1981. Variability in the upper ocean during MILE. Part 1: the heat and momentum budgets. Deep-Sea Res., 28, 1427–1451. [127]CrossRefGoogle Scholar
Drazin, P. ;G. and Reid, W. ;H. 1981. Hydrodynamic Stability. Cambridge: Cambridge University Press. [150]Google Scholar
Durst, F. and Ünsal, B. 2006. Forced laminar-to-turbulent transition of pipe flows. J. Fluid Mech., 560, 449–464. [32]CrossRefGoogle Scholar
Eckart, C. 1948. An analysis of the stirring and mixing in incompressible fluids. J. Mar. Res., 7, 265–275. [13, 32]Google Scholar
Egbert, G. ;D. and Ray, R. ;D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22475–22 502. [219]CrossRefGoogle Scholar
Ellison, T. ;H. and Turner, J. ;S. 1959. Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423–448. [133]CrossRefGoogle Scholar
Eriksen, C. ;C. 1978. Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep ocean. J. Geophys. Res., 83, 2989–3009. [127]CrossRefGoogle Scholar
Faller, A. ;J. and Auer, S. ;J. 1988. The role of Langmuir circulation in the dispersion of surface tracers. J. Phys. Oceanogr., 18, 1108–1123. [196]2.0.CO;2>CrossRefGoogle Scholar
Ferron, B., Mercier, H., Speer, K., Gargett, A. and Polzin, K. 1998. Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 1929–1945. [130, 220]2.0.CO;2>CrossRefGoogle Scholar
Fringer, O. ;B. and Street, R. ;L. 2003. The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494, 319–353. [126, 153]CrossRefGoogle Scholar
Ganachaud, A. and Wunsch, C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data-transport. Nature, 408, 453–457. [141]CrossRefGoogle Scholar
Gargett, A. ;E. 1999. Velcro measurements of turbulent kinetic energy dissipation rate, ε. J. Atmos. Oceanic Technol., 16, 1973–1993. [74]2.0.CO;2>CrossRefGoogle Scholar
Gargett, A. ;E., Osborn, T. ;R. and Naysmth, P. ;W. 1984. Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231–280. [75]CrossRefGoogle Scholar
Gill, A. ;E. 1981. Homogeneous intrusions in a rotating stratified fluid. J. Fluid Mech., 103, 275–295. [32]CrossRefGoogle Scholar
Gill, A. ;E. 1982. Atmosphere–Ocean Dynamics. London: Academic Press. [6, 21, 22, 32, 157]Google Scholar
Graf, G. 1989. Benthic–pelagic coupling in a deep-sea benthic community. Nature, 341, 439–441. [113]CrossRefGoogle Scholar
Grant, H. ;L., Moilliet, A. and Vogel, W. ;M. 1968. Some observations of turbulence in and above the thermocline. J. Fluid Mech., 34, 443–448. [74, 117]CrossRefGoogle Scholar
Grant, H. ;L., Stewart, R. ;W. and Moilliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241–268. [60, 61, 74]CrossRefGoogle Scholar
Gregg, M. ;C. 1980. Microstructure patches in the thermocline. J. Phys. Oceanogr., 10, 915–943. [58]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. ;C. 1987. Diapycnal mixing in a thermocline: a review. J. Geophys. Res., 92, 5249–5286. [150]CrossRefGoogle Scholar
Gregg, M. ;C. 1989. Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 9686–9698. [152]CrossRefGoogle Scholar
Gregg, M. ;C. 1999. Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanogr. Technol., 16, 1483–1490. [62, 74]2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. ;C. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513–515. [153]CrossRefGoogle ScholarPubMed
Gregg, M. ;C., Carter, G. ;S. and Kunze, E. 2005. Corrigendum. J. Phys. Oceanogr., 35, 1712–1715. [220]CrossRefGoogle Scholar
Griffiths, R. ;W. and Linden, P. ;F. 1981. The stability of vortices in a rotating stratified fluid. J. Fluid Mech., 105, 283–316. [32]CrossRefGoogle Scholar
Heathershaw, A. ;D. 1979. The turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. Roy. Astron. Soc., 58, 395–430. [71]CrossRefGoogle Scholar
Hickey, B. ;M. and T. ;C. Royer 2001. California and Alaska Currents. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 1. London: Academic Press, pp. 368–379. [177]Google Scholar
Hinze, J. ;O. 1959. Turbulence. New York: McGraw-Hill. [74]Google Scholar
Hogg, N., Biscaye, P., Gardner, W. and Schmitz, W. ;J. 1982. On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (suppl), 231–263. [155]Google Scholar
Howard, L. ;N. 1961. Note on a paper by John W. Miles. J. Fluid Mech., 10, 509–512. [119, 150]CrossRefGoogle Scholar
Huang, R. ;X. 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746. [219]2.0.CO;2>CrossRefGoogle Scholar
Huppert, H. ;E. and Turner, J. ;S. 1981. Double-diffusive convection. J. Fluid Mech., 106, 299–329. [147]CrossRefGoogle Scholar
Hunt, G. ;N. 1985. Radioactivity in Coastal and Surface Waters of the UK. Aquatic Environment Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft. [191]
Hunt, J. ;C. R, Pacheco, J. ;R., Mahalov, A. and Fernando, H. ;J. S 2005. Effects of rotation and sloping terrain on the fronts of density currents. J. Fluid Mech., 537, 285–315. [32]CrossRefGoogle Scholar
Joule, J. ;P. 1850. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. Lond., 140 (1), 61–82 (also in Scientific Papers, published by Taylor and Francis for the Physical Society of London, 1884, pp. 298–328). [6, 32]CrossRefGoogle Scholar
Karpen, V., Thomsen, L. and Suess, E. 2004. A new ‘schlieren’ technique application for fluid flow visualisation at cold seep sites. Mar. Geol., 204, 145–159. [74]CrossRefGoogle Scholar
Kunze, E. 2001. Vortical modes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3174–3178. [192]Google Scholar
Kunze, E., Williams, A. ;J. III and Schmitt, R. ;W. 1987. Optical microstructure in the thermohaline staircase east of Barbados. Deep-Sea Res., 34, 1697–1704. [74, 150]CrossRefGoogle Scholar
Kunze, E., Briscoe, M. ;G. and Williams, A. ;J. III 1990. Interpreting shear and strain from a neutrally buoyant float. J. Geophys. Res., 95, 18111–18 125. [152]Google Scholar
Kunze, E., Firing, E., Hummon, J. ;M., Chereskin, T. ;K. and Thurnherr, A. ;M. 2006. Global abyssal mixing inferred from lowered acoustic Doppler current profiler shear and conductivity–temperature–depth probe strain profiles. J. Phys. Oceanogr., 36, 1553–1576. [152]CrossRefGoogle Scholar
Lamarre, E. and Melville, W. ;K. 1994. Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 1317–1329. [33]CrossRefGoogle Scholar
Langmuir, I. 1938. Surface motion of water induced by wind. Science, 87, 119–123. [95, 107]CrossRefGoogle ScholarPubMed
Ledwell, J. ;R., Watson, A. ;J. and Laws, C. ;S. 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res., 108, 21499–21 529. [143, 150, 183, 184, 189]Google Scholar
Lee, C. ;M., Kunze, E., Sanford, T. ;B.et al. 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183. [220]CrossRefGoogle Scholar
Leibovich, S. 1983. The form and dynamics of Langmuir circulation. Annu. Rev. Fluid Dyn., 15, 391–427. [107]CrossRefGoogle Scholar
Levitus, S., Antonov, J. and Boyer, D. 2005. The warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. [207]CrossRefGoogle Scholar
Lien, R.-C. and Gregg, M. ;C. 2001. Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591. [136]CrossRefGoogle Scholar
Lu, Y. and Lueck, R. ;G. 1999. Using broadband acoustic Doppler current profiler in a tidal channel. Part II: turbulence. J. Atmos. Oceanic Technol., 14, 1568–1579. [74]2.0.CO;2>CrossRefGoogle Scholar
Lumkin, R., Treguier, A.-M. and Speer, K. 2002. Lagrangian eddy scales in the North Atlantic Ocean. J. Phys. Oceanogr., 32, 2426–2 440. [190]Google Scholar
Lupton, J. ;E. 1995. Hydrothermal plumes: near and far field. In Seafloor Hydrothermal Systems. Physical, Chemical, Biological and Geological Interactions. Washington, DC: American Geophysical Union, pp. 317–346. [159]Google Scholar
McClean, J. ;L., Poulain, P.-M. and Pelton, J. ;W. 2002. Eulerian and Lagrangian statistics from surface drifters and high-resolution POP simulation in the North Atlantic. J. Geophys. Res., 22, 2472–2 491. [190]Google Scholar
MacKinnon, J. ;A. and Gregg, M. ;C. 2003. Mixing on the late-summer New England Shelf – solibores, shear and stratification. J. Phys. Oceanogr., 33, 1476–1492. [152]2.0.CO;2>CrossRefGoogle Scholar
, McWilliams J. ;C., Sullivan, P. ;P. and Moeng, C.-H. 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334, 31–58. [107]Google Scholar
Maxey, M. ;R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465. [192]CrossRefGoogle Scholar
Melville, W. ;K. 1996. The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28, 279–321. [109, 219]CrossRefGoogle Scholar
Melville, W. ;K. and Matusov, P. 2002. Distribution of breaking waves at the ocean surface. Nature, 417, 58–63. [219]CrossRefGoogle ScholarPubMed
Miles, J. 1961. On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496–508. [119, 150]CrossRefGoogle Scholar
Miles, J. ;W. and Howard, L. ;N. 1964. Note on a heterogeneous shear layer. J. Fluid Mech., 20, 331–336. [120]CrossRefGoogle Scholar
Morris, M. ;Y., Hall, M. ;M., Laurent, L. ;C. St. and Hogg, N. ;G. 2001. Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31, 3331–3348. [155]2.0.CO;2>CrossRefGoogle Scholar
Morton, B. ;R., Taylor, G. ;I. and Turner, J. ;S. 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. Lond. A, 234, 1–13. [83, 106, 110]CrossRefGoogle Scholar
Moum, J. ;N. and W. ;D. Smyth 2001. Upper ocean mixing processes. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3093–3100. [107]Google Scholar
Moum, J. ;N., Gregg, M. ;C., Lien, R.-C. and Carr, M.-E. 1995. Comparison of turbulent kinetic energy dissipation rates from two microstructure profilers. J. Atmos. Oceanic Technol., 12, 346–366. [46, 64, 74]2.0.CO;2>CrossRefGoogle Scholar
Moum, J. ;M., Farmer, D. ;M., Smyth, W. ;D., Armi, L. and Vagle, S. 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112. [26]2.0.CO;2>CrossRefGoogle Scholar
Mowbray, D. ;E. and Rarity, B. ;S. H 1967. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28, 1–16. [27]CrossRefGoogle Scholar
, Munk W. 1966. Abyssal recipes. Deep-Sea Res., 13, 207–230. [140, 141, 150]Google Scholar
, Munk W. 1997. Once again: once again – tidal friction. Prog. Oceanogr., 40, 7–35. [219]CrossRefGoogle Scholar
Munk, W. and Wunsch, C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1976–2009. [150, 219]CrossRefGoogle Scholar
Smith, Nimmo W. ;A. M, Thorpe, S. ;A. and Graham, A. 1999. Surface effects of bottom-generated turbulence in a shallow sea. Nature, 400, 251–254. [12]CrossRefGoogle Scholar
Smith, Nimmo W. ;A. M, Katz, J. and Osborn, T. ;R. 2005. On the structure of turbulence in the bottom boundary layer of the coastal ocean. J. Phys. Oceanogr., 35, 72–93. [44]CrossRefGoogle Scholar
Nycander, J. 2005. Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110 (C10), C10028, doi:10.1029/2004JC002487. [219]CrossRefGoogle Scholar
Oakey, N. ;S. 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271. [74]2.0.CO;2>CrossRefGoogle Scholar
Oakey, N. ;S. 2001. Turbulence sensors. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3063–3069. [74]Google Scholar
Okubo, A. 1971. Oceanic diffusion diagrams. Deep-Sea Res., 18, 789–802. [181, 182, 189]Google Scholar
Ollitrault, M., Gabillet, C. and Verdière, A. ;C. 2005. Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381–407. [190]CrossRefGoogle Scholar
Osborn, T. ;R. 1974. Vertical profiling of velocity microstructure. J. Phys. Oceanogr., 4, 109–115. [62]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. ;R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89. [132]2.0.CO;2>CrossRefGoogle Scholar
Osborn, T. ;R. and Cox, C. ;S. 1972. Oceanic fine structure. Geophys. Fluid Dyn., 3, 321–345. [131]CrossRefGoogle Scholar
Ozmidov, R. ;V. 1965. On the turbulent exchange in a stably stratified ocean. Izvestia Acad. Sci. U.S.S.R., Atmos. & Ocean Phys., 1, 861–871. [129, 182]Google Scholar
Park, P. ;K., Kester, D. ;R., Duedall, I. ;W. and Ketchum, B. ;H. 1983. Radioactive wastes and the ocean. In Wastes in the Ocean, ed. P. ;K. Park et al., vol. 3. New York: John Wiley and Sons, pp. 4–46. [192]Google Scholar
Pasquill, F. 1962. Atmospheric Diffusion. Toronto: D. van Nostrand Co. Ltd. [193]Google Scholar
Peters, H., Gregg, M. ;C. and Toole, J. ;M. 1988. On the parametrization of equatorial turbulence. J. Geophys. Res., 93, 1199–1218. [153]CrossRefGoogle Scholar
Polzin, K. 1996. Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr., 26, 1409–1425. [128, 152]2.0.CO;2>CrossRefGoogle Scholar
Polzin, K., Speer, K. ;G., Toole, J. ;M. and Schmitt, R. ;W. 1996. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380, 54–56. [215]CrossRefGoogle Scholar
Polzin, K. ;L., Toole, J. ;M., Ledwell, J. ;R. and Schmitt, R. ;W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. [150]CrossRefGoogle ScholarPubMed
Proudman, J. 1953. Dynamical Oceanography. London: Methuen & Co. Ltd. [149]Google Scholar
Rapp, R. ;J. and Melville, W. ;K. 1990. Laboratory measurements of deep-water breaking waves. Phil. Trans. Roy. Soc. Lond. A, 331, 735–800. [32]CrossRefGoogle Scholar
Ray, R. ;D. and Mitchem, G. ;T. 1997. Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162. [202]CrossRefGoogle Scholar
Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. Lond. A, 174, 935–982 (also in Scientific Papers (1901), 2, 51–105). [3, 32]CrossRefGoogle Scholar
Reynolds, O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. Lond. A, 186, 123–164 (also in Scientific Papers (1901), 2, 535–577). [39]CrossRefGoogle Scholar
Reynolds, O. 1900. On the action of rain to calm the sea. In Papers on Mechanical and Physical Subjects, vol. 1. Cambridge: Cambridge University Press, pp. 86–88. [40]Google Scholar
Rhines, P. ;B. 1979. Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401–411. [192]CrossRefGoogle Scholar
Richardson, L. ;F. and Stommel, H. 1948. Note on eddy diffusion in the sea. J. Meteorol., 5, 238–240. [189]2.0.CO;2>CrossRefGoogle Scholar
Richardson, P. ;L., Bowers, A. ;S. and Zenk, W. 2000. A census of Meddies tracked by floats. Prog. Oceanogr., 45, 209–250. [159]CrossRefGoogle Scholar
Rossby, H. ;T., S. ;C. Riser and A. ;J. Mariano 1983. The western North Atlantic – a Lagrangian viewpoint. In Eddies in Marine Science, ed. Robinson, A. ;R.. Berlin: Springer-Verlag, pp. 66–91. [190]CrossRefGoogle Scholar
Rossby, T. and Webb, D. 1970. Observing abyssal motions by tracking Swallow floats in the SOund Fixing And Ranging channel. Deep-Sea Res., 17, 359–365. [179, 190]Google Scholar
Rudnick, D. ;L., Boyd, T. ;J., Brainard, R. ;E.et al. 2003. From tides to mixing along the Hawaiian Ridge. Science, 301, 355–357. [219]CrossRefGoogle ScholarPubMed
St. Laurent, L. and Schmitt, R. ;W. 1999. The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 1404–1424. [149]2.0.CO;2>CrossRefGoogle Scholar
St. Laurent, L. ;C., Toole, J. ;M. and Schmitt, R. ;W. 2001. Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 3476–3495. [144, 203]2.0.CO;2>CrossRefGoogle Scholar
Saunders, P. ;M. 1987. Flow through Discovery Gap. J. Phys. Oceanogr., 17, 631–643. [155]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. ;W. 1981. Form of the temperature–salinity relationship in the Central Water: evidence of double-diffusive mixing. J. Phys. Oceanogr., 11, 1015–1026. [148]2.0.CO;2>CrossRefGoogle Scholar
Schmitt, R. ;W. 2001. Double-diffusive convection. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 757–766. [150]Google Scholar
Schmitt, R. ;W. and J. ;R. Ledwell 2001. Dispersion and diffusion in the deep ocean. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 2. London: Academic Press, pp. 726–733. [186]Google Scholar
Schott, F., Visbeck, M., Send, U.et al. 1996. Observations of deep convection in the Gulf of Lions, northern Mediterranean, during winter of 1991/2. J. Phys. Oceanogr., 26, 505–524. [107]2.0.CO;2>CrossRefGoogle Scholar
Sharples, J. and J. ;H. Simpson 2001. Shelf-sea and slope fronts. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 5. London: Academic Press, pp. 2760–2768. [109]Google Scholar
Shay, T. ;J. and Gregg, M. ;C. 1984a. Turbulence in an oceanic convective layer. Nature, 310, 282–285. [107]CrossRefGoogle Scholar
Shay, T. ;J. and Gregg, M. ;C. 1984b. Turbulence in an oceanic convective layer – corrigendum. Nature, 311, 84. [92, 107]CrossRefGoogle Scholar
Shay, T. ;J. and Gregg, M. ;C. 1986. Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 1777–1798. [93, 107]2.0.CO;2>CrossRefGoogle Scholar
Simpson, J. ;H. 1998. Tidal processes in shelf seas. In The Sea, vol. 10, ed. Brink, K. ;H. and Robinson, R.. New York: John Wiley and Sons, pp. 113–150. [109]Google Scholar
Simpson, J. ;H., Brown, J., Matthews, J. and Allen, G. 1990. Tidal straining, density currents and stirring in the control of estuarine stratification. Estuaries, 13, 125–132. [109]CrossRefGoogle Scholar
Simpson, J. ;H., T. ;P. Rippeth and A. ;R. Campbell 2000. The phase lag of turbulent dissipation in tidal flow. In Interactions between Estuaries, Coastal Seas and Shelf Seas, ed. Yanagi, T.. Tokyo: Terr Scientific Publishing Co. (TERRAPUB), pp. 57–67. [109]Google Scholar
Smyth, W. ;D. and Moum, J. ;N. 2000. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 1343–1362. [75, 124]CrossRefGoogle Scholar
Smyth, W. ;D. and Winters, K. ;B. 2003. Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr., 33, 694–711. [151]2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. ;D., Hebert, D. and Moum, J. ;N. 1996. Local ocean response to a multiphase westerly wind burst 2. Thermal and freshwater responses. J. Geophys. Res., 101 (C10), 22513–22 533. [94]Google Scholar
Smyth, W. ;D., Zavialov, P. ;O. and Moum, J. ;N. 1997. Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810–822. [112]2.0.CO;2>CrossRefGoogle Scholar
Sparrow, E. ;M., Husar, R. ;B. and Goldstein, R. ;J. 1970. Observations and other characteristics of thermals. J. Fluid Mech., 41, 793–800. [82]CrossRefGoogle Scholar
Spelt, P. ;D. M and Biesheuvel, A. 1997. On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech., 336, 221–244. [192]CrossRefGoogle Scholar
Staquet, C. and Sommeria, J. 2002. Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559–593. [150]CrossRefGoogle Scholar
Stern, M. ;E. 1960. The ‘salt fountain’ and thermohaline convection. Tellus, 12, 172–175. [145]CrossRefGoogle Scholar
Stephens, J. ;C. and Marshall, D. ;P. 2000. Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622–640. [213]2.0.CO;2>CrossRefGoogle Scholar
Stommel, H. 1949a. Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199–225. [189]Google Scholar
Stommel, H. 1949b. Trajectories of small bodies sinking slowly through convection cells. J. Mar. Res., 8, 24–29. [173]Google Scholar
Stommel, H., Arons, A. ;B. and Blanchard, D. 1956. An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3, 152–153. [145, 150]Google Scholar
Strang, E. ;J. and Fernando, H. ;J. S 2001. Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349–386. [150]CrossRefGoogle Scholar
Sundermeyer, M. ;A. and LeLong, M. ;P. 2005. Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. J. Phys. Oceanogr., 35, 2368–2386. [192]CrossRefGoogle Scholar
Sundermeyer, M. ;A., Ledwell, J. ;R., Oakey, N. ;S. and Greenan, B. ;J. W 2005. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 1245–1262. [36, 192]CrossRefGoogle Scholar
Tait, R. ;I. and Howe, M. ;R. 1971. Thermohaline staircases. Nature, 231, 178–179. [150]CrossRefGoogle Scholar
Taylor, G. ;I. 1919. Tidal friction in the Irish Sea. Phil. Trans. R. Soc. Lond. A, 220, 1–92. [33, 70, 73, 201, 219]CrossRefGoogle Scholar
Taylor, G. ;I. 1931. Internal waves and turbulence in a flud of variable density. Rapp. et Proc.-Verb. des Réunions du Conseil Perm. Int. pour l'Expl. de la Mer, 76, 35–42 (also in Scientific Papers 1960, ed. Batchelor, G. ;K., vol. 2, pp. 240–246). [133, 149]Google Scholar
Taylor, G. ;I. 1959. The present position in the theory of turbulent diffusion. In Atmospheric Diffusion and Air Pollution, ed. Frenkiel, F. ;N. and Shephard, P. ;A.. London: Academic Press, pp. 101–112. [193]Google Scholar
Tennekes, H. and Lumley, J. ;L. 1982. A First Course in Turbulence, 2nd edn. Cambridge, MA: MIT Press. [74]Google Scholar
Thorpe, S. ;A. 1968. A method of producing a shear flow in a stratified fluid. J. Fluid Mech., 32, 693–704. [151]CrossRefGoogle Scholar
Thorpe, S. ;A. 1971. Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech., 46, 299–319. [122]CrossRefGoogle Scholar
Thorpe, S. ;A. 1985. Small-scale processes in the upper ocean boundary layer. Nature, 318, 5l9–522. [97, 101]CrossRefGoogle Scholar
Thorpe, S. ;A. 1995. On the meandering and dispersion of a plume of floating particles caused by Langmuir circulation and a mean current. J. Phys. Oceanogr., 25, 685–690. [164, 195]2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. ;A. 2004. Langmuir circulation. Annu. Rev. Fluid Dyn., 36, 55–79. [107]CrossRefGoogle Scholar
Thorpe, S. ;A. 2005. The Turbulent Ocean. Cambridge: Cambridge University Press (referred to as The Turbulent Ocean by S. A.Thorpe, Cambridge University Press, 2005). [i, ix, 6, 21, 33, 75, 109, 152, 192, 220]CrossRefGoogle Scholar
Thorpe, S. ;A. and Hall, A. ;J. 1980. The mixing layer of Loch Ness. J. Fluid Mech., 101, 687–703. [100]CrossRefGoogle Scholar
Thorpe, S. ;A., Osborn, T. ;R., Jackson, J. ;F. E, Hall, A. ;J. and Lueck, R. ;G. 2003. Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr., 33, 122–145. [66, 68]2.0.CO;2>CrossRefGoogle Scholar
Thurnherr, A. ;M., , L. ;C. Laurent St., Speer, K. ;G., Toole, J. ;M. and Ledwell, J. ;R. 2005. Mixing associated with sills in a canyon on the mid-ocean ridge flank. J. Phys. Oceanogr., 35, 1370–1381. [220]CrossRefGoogle Scholar
Toggweiler, J. ;R. and R. ;M. Key 2001. Thermohaline circulation. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 2941–2947. [141]Google Scholar
Troy, C. ;D. and Koseff, J. ;R. 2005. The instability and breaking of long internal waves. J. Fluid Mech., 543, 107–136. [119]CrossRefGoogle Scholar
Turner, J. ;S. 1973. Buoyancy Effects in Fluids. Cambridge: Cambridge University Press. [106, 149, 150]CrossRefGoogle Scholar
Veron, F. and Melville, W. ;K. 2001. Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 25–65. [107, 108]Google Scholar
Wang, W. and Huang, R. ;X. 2004. Wind energy input to surface waves. J. Phys. Oceanogr., 34, 1276–1280. [219]2.0.CO;2>CrossRefGoogle Scholar
Welander, P. 1955. Studies of the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141–156. [14, 32]CrossRefGoogle Scholar
Wesson, J. ;C. and Gregg, M. ;C. 1994. Mixing at the Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99, 9847–9878. [46, 53, 140, 150]CrossRefGoogle Scholar
Wijesekera, H. and T. ;J. Boyd 2001. Upper ocean heat and freshwater budgets. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 6. London: Academic Press, pp. 3079–3083. [96]Google Scholar
Williams, A. ;J. 1975. Images of ocean microstructure. Deep-Sea Res., 22, 811–829. [74]Google Scholar
Wimbush, M. 1970. Temperature gradient above the deep-sea floor. Nature, 227, 1041–1043. [106]CrossRefGoogle Scholar
Wimbush, M. and Munk, W. 1971. The benthic boundary layer. In The Sea, ed. A. ;E. Maxwell, vol. 4(1). New York: John Wiley and Sons, pp. 731–758. [106]Google Scholar
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;B. 1996. Resolving oceanic shear and velocity with the Multi-Scale Profiler. J. Atmos. Oceanic Technol., 13, 1046–1072. [74]2.0.CO;2>CrossRefGoogle Scholar
Winkel, D. ;P., Gregg, M. ;C. and Sanford, T. ;H. 2002. Patterns of shear and turbulence across the Florida Current. J. Phys. Oceanogr., 32, 3269–3285. [46, 134]2.0.CO;2>CrossRefGoogle Scholar
Woods, J. ;D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mech., 32, 791–800. [118, 149]CrossRefGoogle Scholar
Wunsch, C. 2001. Inverse models. In Encyclopedia of Ocean Sciences, ed. Steele, J. ;H., Thorpe, S. ;A. and Turekian, K. ;K., vol. 3. London: Academic Press, pp. 1368–1374. [220]Google Scholar
Wunsch, C. and Ferrari, R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281–314. [200, 218, 219, 220]CrossRefGoogle Scholar
Yaglom, A. ;M. 1994. A. ;N. Kolmogorov as a fluid mechanician and founder of a school of turbulence research. Annu. Rev. Fluid Mech., 26, 1, 22. [48]CrossRefGoogle Scholar
Zhurbas, V. and Oh, I. ;S. 2004. Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109 (C5), C05015, doi:10.1029/2003JC002241. [178, 190]CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: An Introduction to Ocean Turbulence
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801198.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: An Introduction to Ocean Turbulence
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801198.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • S. A. Thorpe, University of Wales, Bangor
  • Book: An Introduction to Ocean Turbulence
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801198.011
Available formats
×