Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-13T13:39:27.118Z Has data issue: false hasContentIssue false

6 - Ornstein isomorphism theorem

Published online by Cambridge University Press:  05 June 2012

Steven Kalikow
Affiliation:
University of Memphis
Randall McCutcheon
Affiliation:
University of Memphis
Get access

Summary

In this chapter we prove the Ornstein isomorphism theorem, which states that any two finitely determined processes of the same entropy are isomorphic. In particular, since Bernoulli processes are finitely determined, this establishes that any two Bernoulli processes of equal entropy are isomorphic. (An earlier, related result of Sinai (1964) has, as a consequence, that any two Bernoulli processes of equal entropy are weakly isomorphic; i.e. each is a factor of the other. Both may be viewed as limiting, stationary versions of Shannon's (1948) noiseless coding theorem (1948).) Several (substantively different) proofs of Ornstein's theorem have been published; to the best of our knowledge, the one presented here adds to the variety. The closest match to our proof may be the proof of J. Kieffer (1984). Like Kieffer, we avoid the use of a marriage lemma.

568. Comment. In this chapter it is necessary to assume that our process is invertible (see, however Hoffman and Rudolph 2002, in which a condition is given for some non-invertible processes to be isomorphic to a one-sided Bernoulli shift). Also, though we restrict attention to the finite entropy case, the theorem has an infinite entropy version; see Ornstein (1970b).

Copying in distribution

In this section, we show that, given a process on a finite alphabet and a second system, we can construct a partition of the second system so that the second system with this partition is close in distribution to the first process. The reader should think of this as a very minor step in the direction of establishing an isomorphism. (It has to be minor, because you can do it for non-isomorphic systems!)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×