Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-02T01:15:20.997Z Has data issue: false hasContentIssue false

7 - Special theory of relativity in astronomy

Published online by Cambridge University Press:  05 June 2012

Hale Bradt
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

What we learn in this chapter

Albert Einstein postulated that the speed of light has the same value in any inertial frame of reference or, equivalently, that there is no preferred frame of reference. The consequence of this postulate is the special theory of relativity, which yields nonintuitive relations between measurements in different inertial frames of reference. We demonstrate the Lorentz transformations for space and time (x, t) and the compact and invariant four-vector formulation. From this, the four-vectors for momentum-energy (p, U) and wave propagation-frequency (k,ω) are formed, and these in turn yield the associated Lorentz transformations. The transformations for electric and magnetic field vectors are also presented. Examples of each type of transformation are given. The relativistic Doppler shift of wavelength or frequency is derived from time dilation and also directly from the k, ω transformations. The latter yield the transformation of radiation direction (aberration) from one inertial frame to another. Stellar aberration explains the displaced celestial positions of stars due to the earth's motion about the sun.

Astrophysical jets often emerge from objects that are accreting matter such as protostars, stellar black holes in binary systems, and active galactic nuclei (AGN) of galaxies. With our special-relativity tools, we study three aspects of the jet phenomenon: the beaming of radiation from objects traveling near the speed of light, the associated Doppler boosting of intensity, and superluminal motion. […]

Type
Chapter
Information
Astrophysics Processes
The Physics of Astronomical Phenomena
, pp. 233 - 289
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×