Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T12:54:06.738Z Has data issue: false hasContentIssue false

7 - EFFECTS OF POLLUTION ON VISIBILITY, ULTRAVIOLET RADIATION, AND ATMOSPHERIC OPTICS

Published online by Cambridge University Press:  05 June 2012

Mark Z. Jacobson
Affiliation:
Stanford University, California
Get access

Summary

Visibility, ultraviolet (UV) radiation intensity, and optical phenomena are affected by gases, aerosol particles, and hydrometeor particles interacting with solar radiation. In clean air, gases and particles affect how far we can see along the horizon and the colors of the sky, clouds, and rainbows. In polluted air, gases and aerosol particles affect visibility, optical phenomena, and UV radiation intensity. In this chapter, visibility, optics, and UV transmission in clean and polluted atmospheres are discussed. An understanding of these phenomena requires a study of the interaction of solar radiation with gases, aerosol particles, and hydrometeor particles through several optical processes, including reflection, refraction, diffraction, dispersion, scattering, absorption, and transmission. These processes are described next.

PROCESSES AFFECTING SOLAR RADIATION IN THE ATMOSPHERE

The solar spectrum is divided into UV (0.01 to 0.38 μm), visible (0.38 to 0.75 μm), and near-infrared (IR) (0.75 to 4.0 μm) wavelength ranges (Section 2.2).

In 1666, Sir Isaac Newton (1642–1727; Fig. 7.1), an English physicist and mathematician, showed that when white, visible light passed through a glass prism, each wavelength of the light bent to a different degree, resulting in the separation of the white light into a variety of colors that he called the light spectrum. Although the spectrum is continuous (the eye can distinguish 10 million colors), Newton discretized the spectrum into seven colors: red, orange, yellow, green, blue, indigo, and violet, to correspond to the seven notes on a musical scale. When the colors of the spectrum were recombined, they reproduced white light.

Type
Chapter
Information
Atmospheric Pollution
History, Science, and Regulation
, pp. 179 - 208
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×