Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-09T22:14:26.196Z Has data issue: false hasContentIssue false

18 - Some nonstationary time series models

Published online by Cambridge University Press:  05 June 2012

Gary Koop
Affiliation:
University of Strathclyde
Dale J. Poirier
Affiliation:
University of California, Irvine
Justin L. Tobias
Affiliation:
Iowa State University
Get access

Summary

In this chapter we present various exercises that involve nonstationary time series. In particular, we focus on the topics of unit roots and cointegration. In one sense, there is nothing new in the Bayesian treatment of nonstationary variables. For instance, unit root issues are often addressed in the context of AR (or ARMA) models. Cointegration issues are often addressed using restricted versions of VARs. In Chapter 17, we discussed AR and VAR models and the methods derived there were not dependent on the variables being stationary. However, with nonstationary data, some important contrasts exist between Bayesian and frequentist approaches and some important issues of prior elicitation arise. Hence, we devote a separate chapter to nonstationary time series models.

Exercises 18.1 and 18.2 illustrate some of the differences between Bayesian and frequentist results with unit root variables. Exercise 18.1 derives the finite-sample posterior distribution for the AR(1) model with AR coefficient θ. For the reader with no frequentist training in time series, we note that it contrasts sharply with the sampling distribution of the maximum likelihood estimator. The latter is quite complicated and its asymptotic distribution differs markedly depending on whether θ < 1, θ = 1, or θ > 1. Exercise 18.2 reproduces the enlightening Monte Carlo experiment of Sims and Uhlig (1991), which demonstrates the differences between posterior and sampling distributions in finite samples. These differences also persist asymptotically because the convergence of the asymptotic sampling distribution is not uniform [see Kwan (1998)].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×