Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-02T01:48:28.090Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Ernest Naylor
Affiliation:
Bangor University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abello, P., Reid, D. G. and Naylor, E. (1991). Comparative locomotor activity patterns in the portunid crabs Liocarcinus holsatus and L. depurator. Journal of the Marine Biological Association UK, 71, 1–10.CrossRefGoogle Scholar
Abello, P., Warman, C. G. and Naylor, E. (1997). Circatidal moulting rhythms in the shore crab Carcinus maenas. Journal of the Marine Biological Association UK, 77, 277–280.CrossRefGoogle Scholar
Aguzzi, J. and Sarda, F. (2008). A history of recent advancements of Nephrops norvegicus behavioural and physiological rhythms. Review of Fish Biology and Fisheries, 18, 235–248.CrossRefGoogle Scholar
Aguzzi, J., Sarda, F., Abello, P., Company, J. B. and Rotllant, G. (2003). Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean. Marine Ecology Progress Series, 258, 201–211.CrossRefGoogle Scholar
Aguzzi, J., Company, J. B. and Garcia, J. A. (2008). The circadian behavioural regulation of the shrimp Processa canaliculata Leach 1851 (Decapoda, Processidae) in relation to depth, ontogeny and the reproductive cycle. Crustaceana, 81, 1301–1316.CrossRefGoogle Scholar
Aguzzi, J., Sanchez-Pardo, J., Garcia, J. A. and Sarda, F. (2009). Day-night and depth differences in haemolymph melatonin of the Norway Lobster, Nephrops norvegicus (L.). Deep Sea Research, doi:10.1016/j.dsr.2009.06.001.CrossRef
Al-Adhub, A. H. Y. and Naylor, E. (1977). Daily variations in Dichelopandalus bonnieri (Caullery) as a component of the epibenthos. European Marine Biology Symposia, 11, 1–6.Google Scholar
Aldrich, J. C. (1997). Crab clocks sent for calibration. Chronobiology International, 14, 435–437.CrossRefGoogle Scholar
Alheit, J. and Naylor, E. (1976). The behavioural basis of intertidal zonation in Eurydice pulchra Leach. Journal of Experimental Marine Biology and Ecology, 23, 135–144.CrossRefGoogle Scholar
Ameyaw-Akumfi, C. and Naylor, E. (1987a). Temporal patterns of shell-gape in Mytilus edulis. Marine Biology, 95, 237–242.CrossRefGoogle Scholar
Ameyaw-Akumfi, C. and Naylor, E. (1987b). Spontaneous and induced components of salinity preference behaviour in Carcinus maenas. Marine Ecology Progress Series, 37, 153–158.CrossRefGoogle Scholar
Andersson, S., Kautsky, L. and Kalvas, A. (1994). Circadian and lunar gamete release in Fucus vesiculosus in the atidal Baltic Sea. Marine Ecology Progress Series, 110, 195–201.CrossRefGoogle Scholar
Arechiga, H. (1977). Circadian rhythmicity in the nervous system of crustaceans. Federation Proceedings, 36(7), 2036–2041.Google ScholarPubMed
Arechiga, H. (1993). Circadian systems. Current Opinion in Neurobiology, 3, 1005–1010.CrossRefGoogle Scholar
Arechiga, H. and Huberman, A. (1980). Hormonal modulation of neuronal activity in crustaceans. In Comparative Aspects of Neuro-endocrine Control of Behaviour, eds. Valverde, C. and Arechiga, H.. Basel: S. Karger, pp. 16–34.Google Scholar
Arechiga, H. and Wiersma, C. A. G. (1969). Circadian rhythm of responsiveness in crayfish visual units. Journal of Neurobiology, 1, 71–85.CrossRefGoogle ScholarPubMed
Arechiga, H., Huberman, A. and Naylor, E. (1974). Hormonal modulation of circadian neural activity in Carcinus maenas (L.). Proceedings of the Royal Society of London, B, 187, 299–313.CrossRefGoogle Scholar
Arechiga, H., Huberman, A. and Martinez-Palomo, A. (1977). Release of a neuro-depressing hormone from the crustacean sinus gland. Brain Research, 128, 93–108.CrossRefGoogle Scholar
Arechiga, H., Williams, J. A., Pullin, R. S. V. and Naylor, E. (1979). Cross-sensitivity to neuro-depressing hormone and its effect on locomotor rhythmicity in two different groups of crustaceans. General and Comparative Endocrinology, 37, 350–357.CrossRefGoogle ScholarPubMed
Arechiga, H., Atkinson, R. J. A. and Williams, J. A. (1980). Neurohumoral basis of circadian rhythmicity in Nephrops norvegicus (L.). Marine Behaviour and Physiology, 7, 185–197.CrossRefGoogle Scholar
Arechiga, H., Garcia, U. and Rodriguez-Sosa, L. (1985). Neurosecretory role of crustacean eyestalk in the control of neuronal activity. In Model Neural Networks and Behaviour, ed. Selverston, A. I.. New York: Plenum Publishing Co., pp. 361–379.CrossRefGoogle Scholar
Arendt, J., Deacon, S., English, J., Hampton, S. and Morgan, L. (1995). Melatonin and adjustment to phase-shift. Journal of Sleep Research, 4, 74–79.CrossRefGoogle ScholarPubMed
Arnoult, F., Vivien-Roels, B. and Vernet, G. (1994). Melatonin in the nermertine worm Lineus lacteus: identification and daily variations. Biological Signals, 3, 296–301.CrossRefGoogle ScholarPubMed
Arudpragasam, K. D. and Naylor, E. (1964). Gill ventilation volumes, oxygen consumption and respiratory rhythms in Carcinus maenas (L). Journal of Experimental Biology, 41, 309–321.Google Scholar
Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia for Quantitative Biology, 25, 11–28.CrossRefGoogle ScholarPubMed
Aschoff, J., von St-Paul, U. and Wever, R. (1971). The longevity of flies under the influence of time displacement. Naturwissenschaften, 58, 574.CrossRefGoogle Scholar
Atkinson, R. J. A. and Naylor, E. (1976). An endogenous activity rhythm and rhythmicity of catches of Nephrops norvegicus (L.). Journal of Experimental Marine Biology and Ecology, 25, 95–108.CrossRefGoogle Scholar
Ball, E. E. (1968). Activity patterns and retinal pigment migration in Pagurus (Decapoda: Paguridae). Crustaceana, 14, 302–306.CrossRefGoogle Scholar
Barbieri, C. and Rampazzi, F., eds. (2001). Earth, Moon and Planets, 85–86, 575 pp.
Barham, E. G. (1963). Siphonophores and the deep scattering layer. Science, 140, 826–828.CrossRefGoogle ScholarPubMed
Barr, L. (1970). Diel vertical migration of Pandalus borealis in Kachemak Bay, Alaska. Journal of the Fisheries Research Board of Canada, 27, 669–676.CrossRefGoogle Scholar
Beentjes, M. P. and Williams, B. G. (1986). Endogenous circatidal rhythmicity in the New Zealand cockle Chione stuchburyi (Bivalvia: Veneridae). Marine Behaviour and Physiology, 12, 171–180.CrossRefGoogle Scholar
Benhamou, S., Bonadonna, F. and Jouventin, P. (2003). Successful homing of magnet-carrying white-chinned petrels released in the open sea. Animal Behaviour, 65, 729–734.CrossRefGoogle Scholar
Benn, C. R. (2001). The moon and the origin of life. Earth, Moon and Planets, 85–86, 61–66.Google Scholar
Bennett, D. B. and Brown, C. G. (1983). Crab (Cancer pagurus) migrations in the English Channel. Journal of the Marine Biological Association UK, 63, 371–398.CrossRefGoogle Scholar
Bentley, M. G., Olive, P. J. W. and Last, K. (2001). Sexual satellites, moonlight and nuptial dances of worms: the influence of the moon on reproduction of marine animals. Earth, Moon and Planets, 85–86, 67–84.Google Scholar
Bergin, M. E. (1981). Hatching rhythms in Uca pugilator. Marine Biology, 63, 151–158.CrossRefGoogle Scholar
Berry, A. J. (1986). Semilunar and lunar spawning periodicity in some tropical littorinid gastropods. Journal of Molluscan Studies, 52, 144–149.CrossRefGoogle Scholar
Berrill, I. K., Porter, M. J. R., Smart, A., Mitchell, D. and Bromage, N. R. (2003). Photoperiodic effects on precocious maturation, growth and smoltification in Atlantic salmon, Salmo salar. Aquaculture, 222, 239–252.CrossRefGoogle Scholar
Bliss, D. E. (1982 onwards). The Biology of Crustacea, 1–10. London: Academic Press.Google Scholar
Block, G. D. and Roberts, M. H. (1981). Circadian pacemaker in the Bursatella eye: properties of the rhythm and its effect on locomotor behaviour. Journal of Comparative Physiology, 142, 403–410.CrossRefGoogle Scholar
Boden, B. P. and Kampa, E. M. (1967). The influence of natural light on the vertical migration of an animal community in the sea. Symposia of the Zoological Society of London, 19, 15–26.Google Scholar
Bogorov, V. G. (1946). Diurnal vertical migration of zooplankton in polar seas. Trudy Institut Okeanologie An SSSR, 1, 151–158.Google Scholar
Bohn, G. (1903). Sur les movements oscillatoires des Convoluta roscoffensis. Comptes rendues Académie des Sciences Paris, 137, 576–578.Google Scholar
Bohn, G. and Pieron, H. (1906). Le rhythme des marees et la phenomene de l'anticipation reflexe. Comptes rendues Societe de Biologie, Paris, 61, 660–661.Google Scholar
Bonadonna, F., Chamaillé-Jammes, S., Pinaud, D. and Weimerskirch, H. (2003a). Magnetic cues: Are they important in black–browed albatross Diomedea melanophris orientation?Ibis, 145, 152–155.CrossRefGoogle Scholar
Bonadonna, F., Benhamou, S. and Jouventin, P. (2003b). Orientation in ‘featureless’ environments: the extreme case of pelagic birds. In Avian Migration, eds. Berthold, P., Gwinner, E. and Sonnenschein, E.. Heidelberg: Springer.Google Scholar
Bonadonna, F., Bajzak, C., Benhamou, S., et al. (2005). Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Proceedings of the Royal Society of London, B, 272, 489–495.CrossRefGoogle Scholar
Brady, J. (1979). Biological Clocks. London: Arnold, 60 pp.Google Scholar
Brady, J. (1982). Circadian rhythms in animal physiology. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 14, 121–140.
Brady, J. (1987). Circadian rhythms: endogenous or exogenous?Journal of Comparative Physiology A, 161, 711–714.CrossRefGoogle Scholar
Brandstatter, R. (2002). The circadian pacemaking system of birds. In Biological Rhythms, ed. Kumar, V.. New Delhi: Narose Publishing House.Google Scholar
Bregazzi, P. K. and Naylor, E. (1972). The locomotor activity rhythm of Talitrus saltator (Montagu). Journal of Experimental Biology, 57, 375–391.Google Scholar
Broda, H.Brugg, D.Homma, K. L. and Hastings, J. W. (1985). Circadian communication between unicells?Cell Biophysics, 8, 47–67.CrossRefGoogle Scholar
Brown, F. A. (1954). Persistent activity rhythms in the oyster. American Journal of Physiology, 178, 510–514.Google ScholarPubMed
Brown, F. A. (1958). The rhythmic nature of animals and plants. Northwestern University Tri-Quarterly, 1, 35–47.Google Scholar
Brown, F. A. (1960). Response to pervasive geophysical factors and the biological clock problem. Cold Spring Harbor Symposia on Quantitative Biology, 25, 57–71.CrossRefGoogle Scholar
Brown, F. A. (1962a). Biological Clocks. American Institute for Biological Sciences, B.S.C.S. Pamphlet 2. Boston, USA: Heath and Co, 36 pp.Google Scholar
Brown, F. A. (1962b). Extrinsic rhythmicality: a reference frame for biological rhythms under so-called constant conditions. Annals of the New York Academy of Sciences, 98(4), 775–787.CrossRefGoogle ScholarPubMed
Brown, F. A. (1965). A unified theory for biological rhythms. In Circadian Clocks: Proceedings of the Feldafing Summer School, ed. Ascoff, J.. Amsterdam: North Holland Publishing Co., pp. 231–261.Google Scholar
Brown, F. A., Fingerman, M., Sandeen, M. I. and Webb, H. M. (1953). Persistent diurnal and tidal rhythms of colour change in the fiddler crab Uca pugnax. Journal of Experimental Zoology, 123, 29–60.CrossRefGoogle Scholar
Brown, F. A., Webb, H. M., Bennett, M. F. and Sandeen, M. I. (1954). Temperature-independence of the frequency of the endogenous rhythm of Uca. Physiological Zoology, 17, 346–349.Google Scholar
Brown, F. A., Freeland, R. O. and Ralph, C. L. (1955a). Persistent rhythms of oxygen consumption in potatoes, carrots and the seaweed, Fucus. Plant Physiology, 30(3), 280–292.CrossRefGoogle Scholar
Brown, F. A., Webb, H. M. and Bennett, M. F. (1955b). Proof for an endogenous component in persistent solar and lunar rhythmicity in organisms. Proceedings of the National Academy of Sciences, Washington, 41, 93–100.CrossRefGoogle ScholarPubMed
Bryson, B. (2003). A Short History of Nearly Everything. Doubleday, 500 pp.Google Scholar
Bűnning, E. (1960). Circadian rhythms and time measurement in photoperiodism. Cold Spring Harbor Symposia on Quantitative Biology, 25, 249–256.CrossRefGoogle Scholar
Bűnning, E. (1967). The Physiological Clock, New York: Springer–Verlag, 167 pp.CrossRefGoogle Scholar
Cahill, G. M. (2002). Clock mechanisms in zebra fish. Cell and Tissue Research, 309, 27–34.CrossRefGoogle Scholar
Carlisle, D. B. and Knowles, F. G. W. (1959). Endocrine Control in Crustaceans. Cambridge, UK: Cambridge University Press, 120 pp.Google Scholar
Carr, A. (1963). Orientation problems in the high seas travel and terrestrial movements of marine turtles. In Bio-telemetry, ed. Slater, L. E.. New York: Pergamon Press, pp. 179–193.Google Scholar
Caspers, H. (1984). Spawning periodicity and habitat of the Palolo worm Eunice viridis in the Samoan Islands. Marine Biology, 79, 229–236.CrossRefGoogle Scholar
Castel, J. and Viega, J. (1990). Distribution and retention of the copepod Eurytemora affinis hirundoides in a turbid estuary. Marine Biology, 107, 119–128.CrossRefGoogle Scholar
Chandrashekaran, M. K. (1965). Persistent tidal and diurnal rhythms of locomotor activity and oxygen consumption in Emerita asiatica. Zeitschrift fur Physiologie, 50, 137–150.CrossRefGoogle Scholar
Chapin, J. P. and Wing, L. W. (1959). The Wideawake Calendar 1941–1958. Auk, 76, 153–158.CrossRefGoogle Scholar
Chapman, C. J. and Rice, A. L. (1971). Some direct observations on the ecology and behaviour of the Norway lobster, Nephrops norvegicus. Marine Biology, 10, 321–329.CrossRefGoogle Scholar
Christianson, R. and Sweeney, B. M. (1972). Sensitivity to stimulation, a component of the circadian rhythm in luminescence in Gonyaulax. Plant Physiology, 49, 994–997.CrossRefGoogle ScholarPubMed
Christy, J. H. (1978). Adaptive significance of reproductive cycles in the fiddler crab Uca pugilator: a hypothesis. Science, 199, 453–455.CrossRefGoogle ScholarPubMed
Chung, J. S. and Webster, S. G. (2006). Dynamics of in vivo release of moult-inhibiting hormone and crustacean hyperglycaemic hormone in the shore crab Carcinus maenas. Endocrinology, 146, 5545–5551.CrossRefGoogle Scholar
Clark, F. N. (1925). The life history of Leuresthes tenuis, an atherine fish with tide-controlled spawning habits. California Fish and Game Committee Bulletin, 10, 1–51.Google Scholar
Clark, L. B. and Hess, H. W. (1940). Swarming of the Atlantic Palolo worm Leodice fucata. Carnegie Publications, 524, 21–27.Google Scholar
Clark, R. B. (1965). Endocrinology and reproductive biology of polychaetes. Oceanography and Marine Biology Annual Reviews, 3, 211–255.Google Scholar
Cole, L. C. (1957). Biological clock in the unicorn. Science, 125, 874.CrossRefGoogle ScholarPubMed
Colin, P. L., Shapiro, D. Y. and Weiler, D. (1987). Aspects of the reproduction of two species of groupers Epinephelus guttatus and E. striatus in the West Indies. Bulletin of Marine Science, 40, 220–230.Google Scholar
Colman, J. S. (1950). The Sea and its Mysteries. London: G. Bell and Sons, 285 pp.Google Scholar
Conway Morris, S. (2003). Life's Solution. Cambridge, UK: Cambridge University Press, 464 pp.CrossRefGoogle Scholar
Criales, M. M., Wang, J., Browder, J. A. and Robblee, M. B. (2005). Tidal and seasonal effects on transport of pink shrimp postlarvae. Marine Ecology Progress Series, 286, 231–238.CrossRefGoogle Scholar
Cronin, T. W. (1982). Estuarine retention of larvae of the crab Rhithropanopeus harrisii. Estuarine, Coastal and Shelf Science, 15, 207–220.CrossRefGoogle Scholar
Cronin, T. W. and Forward, R. B. (1979). Tidal vertical migrations and endogenous rhythm in estuarine crab larvae. Science, 205, 1020–1022.CrossRefGoogle ScholarPubMed
Cushing, D. H. (1951). The vertical migration of planktonic Crustacea. Biological Reviews, 26(2), 158–192.CrossRefGoogle ScholarPubMed
Cushing, D. H. (1969). The regularity of the spawning season in some fishes. Journal du Conseil pour l'exploration de la mer, 33, 81–92.CrossRefGoogle Scholar
Daan, S. (1982). Circadian rhythms in animals and plants. In Biological Timekeeping, ed Brady, J.. Society for Experimental Biology Seminar Series, 14, 11–32.
Daase, M., Eiane, K., Aksues, D. L. and Vogedes, D. (2008). Vertical distribution of Calanus spp. and Metridia longa at four Arctic localities. Marine Biology Research, 4, 193–207.CrossRefGoogle Scholar
Dalley, R. (1979). Effects of non-circadian light cycles on survival and development of Palaemon elegans reared in the laboratory. European Marine Biology Symposia, 13, 157–163.Google Scholar
Dalley, R. (1980a). Effects of non-circadian light/dark cycles on the growth and moulting of Palaemon elegans reared in the laboratory. Marine Biology, 56, 71–78.CrossRefGoogle Scholar
Dalley, R. (1980b). The survival and development of the shrimp Crangon crangon (L.), reared under non-circadian light/dark cycles. Journal of Experimental Marine Biology and Ecology, 47, 101–112.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species by Natural Selection. London: John Murray, 491 pp.Google Scholar
Darwin, C. and Darwin, F. (1880). The Power of Movement in Plants. London: John Murray.CrossRefGoogle Scholar
Davenport, J. (1985a). Osmotic control in marine animals. Symposia of the Society for Experimental Biology, 39, 207–244.Google ScholarPubMed
Davenport, J. (1985b). Environmental Stress and Behavioural Adaptations. London and Sydney: Croom Helm, 122 pp.Google Scholar
DeCoursey, P. J. (1983). Biological timing. In The Biology of Crustacea, 7, ed. Bliss, D. E.. New York: Academic Press, pp. 107–162.Google Scholar
Della Santina, P. D. and Naylor, E. (1993). Endogenous rhythms in the homing behaviour of the limpet Patella vulgata Linnaeus. Journal of Molluscan Studies, 59, 87–91.Google Scholar
Pauw, N. (1973). On the distribution of Eurytemora affinis (Poppe) (Copepoda) in the western Scheldte estuary. Verh. Int. Verein. theor. angew. Limnol., 18, 1462– 1472.Google Scholar
Wilde, P. A. W. J. and Berghuis, E. M. (1979). Cyclic temperature fluctuations in a tidal mud flat. European Marine Biology Symposia, 13, 435–441.Google Scholar
Dieck, I. T. (1991). Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). Journal of Phycology, 27, 341–350.CrossRefGoogle Scholar
Digby, P. S. B. (1961). The vertical distribution and movements of plankton under midnight sun conditions in Spitzbergen. Journal of Animal Ecology, 30(1), 9–25.CrossRefGoogle Scholar
Dirckson, H., Webster, S. G. and Keller, R. (1988). Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting hormone and hyperglycaemic hormone in the eyestalk of brachyuran crustaceans. Cell and Tissue Research, 251, 3–12.CrossRefGoogle Scholar
Dronkers, J. J. (1964). Tidal Computations in Rivers and Coastal Waters. New York: John Wiley and Sons.Google Scholar
Dunlap, J. C., Loros, J. J. and DeCoursey, P. (2004). Chronobiology: Biological Timekeeping. Sunderland, MA, USA: Sinauer Associates Inc. Publishing, 382 pp.Google Scholar
Dustan, J. and Bromage, N. (1991). Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). Journal of Biological Rhythms, 6(1), 49–53.CrossRefGoogle Scholar
Eaton, J. W. and Simpson, P. (1979). Vertical migrations of the intertidal dinoflagellate Amphidinium herdmaniae Kofoid and Swezy. European Marine Biology Symposia, 13, 339–345.Google Scholar
Eckert, R. (1966). Excitation and luminescence in Noctiluca miliaris. In Bioluminescence in Progress, eds. Johnson, F. H. and Haneda, Y.. Princeton, NJ, USA: Princeton University Press, pp. 269–300.Google Scholar
Edwards, J. M. and Naylor, E. (1987). Endogenous circadian changes in orientational behaviour in Talitrus saltator. Journal of the Marine Biological Association UK, 67, 17–26.CrossRefGoogle Scholar
Edwards, R. R. C. (1978). The fishery and fishery biology of penaeid shrimp on the Pacific coast of Mexico. Oceanography and Marine Biology Annual Reviews, 16, 145–180.Google Scholar
Ehrenbaum, E. (1911). Mittelungen uber die Lebensverhaltnisse unserer Fische. 9: Pleuronectes flesus L., Flunder, Butt. Der Fischerbote, 4(3), 109–176.Google Scholar
Ehret, C. F. and Trucco, E. (1967). Molecular models of the circadian clock: 1. The chronon concept. Journal of Theoretical Biology, 15, 240–262.CrossRefGoogle Scholar
Emata, A. C., Meier, A. H. and Hsiao, S. M. (1991). Daily variations in plasma hormone concentrations during the semilunar spawning cycle of the Gulf killifish, Fundulus grandis. Journal of Experimental Zoology, 259, 343–354.CrossRefGoogle Scholar
Ennis, G. P. (1973). Endogenous rhythmicity associated with larval hatching in the lobster Homarus gammarus. Journal of the Marine Biological Association UK, 53, 531–538.CrossRefGoogle Scholar
Enright, J. T. (1963). The tidal activity rhythm of a sand-beach amphipod. Zeitschrift fur vergleichende Physiologie, 46, 276–313.CrossRefGoogle Scholar
Enright, J. T. (1965a). The search for rhythmicity in biological time-series. Journal of Theoretical Biology, 8, 426–468.CrossRefGoogle ScholarPubMed
Enright, J. T. (1965b). Entrainment of a tidal rhythm. Science, NY, 147, 864–867.CrossRefGoogle ScholarPubMed
Enright, J. T. (1971). The internal clock of drunken isopods. Zeitschrift fur vergleichende Physiologie, 75, 332–346.CrossRefGoogle Scholar
Enright, J. T. (1972). A virtuoso isopod: circalunar rhythms and their fine structure. Journal of Comparative Physiology, 77, 141–162.CrossRefGoogle Scholar
Enright, J. T. (1974). Rhythmicity. (Review of The Control of Physiological and Behavioral Tidal Rhythms, by John D. Palmer, 1974), Science, 185, p. 521.Google Scholar
Enright, J. T. (1975). Orientation in time: endogenous clocks. In Marine Ecology 2(2): Physiological Mechanisms, ed. Kinne, O.. Wiley Interscience, pp. 917–944.Google Scholar
Enright, J. T. (1976a). Resetting a tidal clock: a phase-response curve for Excirolana. In Biological Rhythms in the Marine Environment, ed. DeCoursey, P. J.. SC, USA: University of South Carolina, pp. 103–114.Google Scholar
Enright, J. T. (1976b). Plasticity in an isopod's clockwork: shaking shapes form and affects phase and frequency. Journal of Comparative Physiology, 107, 13–37.CrossRefGoogle Scholar
Enright, J. T. (1977). Diel vertical migration: adaptive significance and timing. Part 1. Selective advantage: a metabolic model. Limnology and Oceanography, 22, 856–872.CrossRefGoogle Scholar
Enright, J. T. and Hamner, W. M. (1967). Vertical migration and endogenous rhythmicity. Science, 157, 937–941.CrossRefGoogle ScholarPubMed
Epifanio, C. E., Valenti, C. C. and Pembroke, A. E. (1984). Dispersal and recruitment of blue crab larvae in Delaware Bay, USA. Estuarine, Coastal and Shelf Science, 18, 1–12.CrossRefGoogle Scholar
Esterly, C. O. (1911). Diurnal migration of Calanus finmarchicus in the San Diego region during 1909. International Review of Hydrobiology, 4, 140–151.CrossRefGoogle Scholar
Esterly, C. O. (1917). The occurrence of a rhythm in the geotropism of two species of plankton copepods when certain recurring external conditions are absent. University of California Publications in Zoology, 16, 393–400.Google Scholar
Everson, I. (1982). Diurnal variations in mean volume back-scattering strength of an Antarctic krill (Euphausia superba) patch. Journal of Plankton Research, 4, 155–162.CrossRefGoogle Scholar
Farmer, A. S. D. (1974). Field assessments of diurnal activity in Irish Sea populations of the Norway lobster Nephrops norvegicus (L.) (Decapoda: Nephropidae). Estuarine and Coastal Marine Science, 2, 37–47.CrossRefGoogle Scholar
Fingerman, M. (1955). Persistent daily and tidal rhythms of color change in Callinectes sapidus. Biological Bulletin, 109(2), 255–264.CrossRefGoogle Scholar
Follett, B. K. (1982). Photoperiodic physiology in animals. In Biological Timekeeping, ed. Brady, J., Society for Experimental Biology Seminar Series, 14, 83–100.
Forward, R. B. (1980). Phototaxis of a sand-beach amphipod: physiology and tidal rhythms. Journal of Comparative Physiology, 135, 243–250.CrossRefGoogle Scholar
Forward, R. B. (1988). Diel vertical migration: zooplankton photobiology and behaviour. Oceanography and Marine Biology Annual Reviews, 26, 361–393.Google Scholar
Forward, R. B. (2009). Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis. Biological Bulletin 216(3), 243–256.CrossRefGoogle ScholarPubMed
Forward, R. B. and Cronin, T. W. (1980). Tidal rhythms of activity and phototaxis of an estuarine crab larva. Biological Bulletin, 158, 295–303.CrossRefGoogle Scholar
Forward, R. B. and Tankersley, R. A. (2001). Selective tidal-stream transport of marine animals. Oceanography and Marine Biology Annual Reviews, 39, 305–353.Google Scholar
Forward, R. B., Cronin, T. W. and Stearns, D. E. (1984). Control of diel vertical migration photoresponses of a larval crustacean. Limnology and Oceanography, 29, 146–154.CrossRefGoogle Scholar
Forward, R. B., Cohen, J. H., Irvine, R. D. et al. (2004). Settlement of blue crab Callinectes sapidus megalopae in a North Carolina estuary. Marine Ecology Progress Series, 269, 237–247.CrossRefGoogle Scholar
Foster, R. and Kreitzman, L. (2005). Rhythms of Life. London: Profile Books, 278 pp.Google Scholar
Frasseto, R., Backus, R. H. and Hays, E. (1962). Sound scattering layers and their relation to thermal structures in the Strait of Gibraltar. Deep Sea Research, 9(1), 69–72.Google Scholar
Frazer, F. C. (1937). On the development and distribution of the young stages of krill (Euphausia superba). Discovery Reports, 14, 1–192.CrossRefGoogle Scholar
Gambinieri, S. and Scapini, F. (2008). Importance of orientation to the sun and local landscape features in young inexpert Talitrus saltator (Amphipoda: Talitridae) from two Italian beaches differing in morphodynamics, erosion and stability. Estuarine, Coastal and Shelf Science, 77, 357–368.CrossRefGoogle Scholar
Gamble, F. W. and Keeble, F. (1903). The bionomics of Convoluta roscoffensis, with special reference to its green cells. Proceedings of the Royal Society of London, B, 72, 93–98.CrossRefGoogle Scholar
Gibson, R. N. (1965). Rhythmic activity in littoral fish. Nature, London, 207, 544–545.CrossRefGoogle Scholar
Gibson, R. N. (1967). Experiments on the tidal rhythm of Blennius pholis. Journal of the Marine Biological Association, UK, 47, 97–111.CrossRefGoogle Scholar
Gibson, R. N. (1969). Activity rhythms in two species of Blennius from the Mediterranean. Vie et Milieu, XX 1A, 235–244.Google Scholar
Gibson, R. N. (1973). Tidal and circadian activity rhythms in juvenile plaice Pleuronectes platessa. Marine Biology, 22, 379–386.CrossRefGoogle Scholar
Gibson, R. N. (2004). Go with the flow: tidal migrations in marine animals. Hydrobiologia, 503, 153–161.CrossRefGoogle Scholar
Gibson, R. N., Blaxter, J. H. S. and Groot, S. J. (1978). Developmental changes in the activity rhythm of plaice (Pleuronectes platessa). In Rhythmic Activity of Fishes, ed. Thorpe, J. E.. London: Academic Press, pp. 169–186.Google Scholar
Grubb, T. C. (1974). Olfactory navigation to nesting burrows in Leach's petrel. Auk, 90, 78–82.Google Scholar
Gwinner, E. (1989). Photoperiod as a modifying and limiting factor in the expression of avian circannual rhythms. Journal of Biological Rhythms, 4, 237–256.CrossRefGoogle ScholarPubMed
Hall, J. C. (2003). Genetics and molecular biology of rhythms in Drosophila and other insects. Advances in Genetics, 48, 1–280.Google Scholar
Hamner, W. M. (1988). Behavior of plankton and patch formation in pelagic ecosystems. Bulletin of Marine Science, 43, 752–757.Google Scholar
Hardeland, R. and Poeggeler, B. (2003). Non-vertebrate melatonin. Journal of Pineal Research, 34, 233–241.CrossRefGoogle ScholarPubMed
Hardeland, R., Balzer, I., Poeggeler, B. et al. (1995). On the primary functions of melatonin in evolution: modulation of photoperiodic signals in a unicell, photooxidation and scavenging of free radicals. Journal of Pineal Research, 18, 104–111.CrossRefGoogle Scholar
Hardin, P. E., Hall, J. C. and Rosbash, M. (1990). Feedback of the Drosophila period gene product on the circadian cycling of its messenger RNA levels. Nature, 343, 536–540.CrossRefGoogle ScholarPubMed
Hardy, A. C. (1956). The Open Sea: World of Plankton. London: Collins, 335 pp.Google Scholar
Hardy, A. C. and Gunther, E. R. (1935). The plankton of the South Georgia whaling ground and adjacent waters, 1926–7. Discovery Reports, 11, 511–538.Google Scholar
Hardy, A. C. and Paton, W. N. (1947). Experiments on the vertical migration of plankton animals. Journal of the Marine Biological Association UK, 26, 467–526.CrossRefGoogle ScholarPubMed
Harker, J. E. (1964). The physiology of diurnal rhythms. London: Cambridge University Press, 114 pp.
Harris, G. J. and Morgan, E. (1984a). The effects of salinity changes on the endogenous circatidal rhythm of the amphipod Corophium volutator (Pallas). Marine Behaviour and Physiology, 10, 199–217.CrossRefGoogle Scholar
Harris, G. J. and Morgan, E. (1984b). The effects of ethanol, valinomycin and cyclohexamide on the endogenous circatidal rhythm of the estuarine amphipod Corophium volutator (Pallas). Marine Behaviour and Physiology, 10, 219–233.CrossRefGoogle Scholar
Harris, G. J. and Morgan, E. (1984c). The location of circatidal pacemakers in the estuarine amphipod crustacean Corophium volutator using a selective chilling technique. Journal of Experimental Biology, 110, 125–142.Google Scholar
Harris, J. E. (1963). The role of endogenous rhythms in vertical migration. Journal of the Marine Biological Association UK, 43, 153–166.CrossRefGoogle Scholar
Hastings, J. W. and Sweeney, B. M. (1957). On the mechanism of temperature-independence in a biological clock. Proceedings of the National Academy of Science USA, 48, 804–811.CrossRefGoogle Scholar
Hastings, J. W. and Sweeney, B. M. (1958). A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biological Bulletin, 115, 440.CrossRefGoogle Scholar
Hastings, J. W., Astrachan, L. and Sweeney, B. M. (1961). A persistent daily rhythm of photosynthesis. Journal of General Physiology, 45, 69–76.CrossRefGoogle ScholarPubMed
Hastings, M. H. (1981a). The entraining effect of turbulence on the circatidal activity rhythm and its semilunar modulation in Eurydice pulchra. Journal of the Marine Biological Association UK, 61, 151–160.CrossRefGoogle Scholar
Hastings, M. H. (1981b). Semilunar variations of endogenous circatidal rhythms of activity and respiration in the isopod Eurydice pulchra. Marine Ecology Progress Series, 4, 85–90.CrossRefGoogle Scholar
Hauenschild, C. (1960). Lunar periodicity. Cold Spring Harbor Symposia on Quantitative Biology, 25, 491–497.CrossRefGoogle ScholarPubMed
Hawking, S. (1988). A Brief History of Time. London: Bantam Press, 218 pp.Google Scholar
Hays, G. C. (1995). Zooplankton avoidance activity. Nature, 376, 650.CrossRefGoogle Scholar
Hays, G. C., Åkesson, S., Broderick, A. C.et al. (2003). Island-finding ability of marine turtles. Proceedings of the Royal Society of London B, 270, Supp. 1, 5–7.CrossRefGoogle ScholarPubMed
Head, J. W. (2001). Lunar and planetary perspectives on the geological history of the earth. Earth Moon and Planets, 85–86, 153–177.Google Scholar
Heckman, C. W. (1986). The anadromous migration of a calanoid copepod, Eurytemora affinis (Poppe, 1880) in the Elbe estuary. Crustaceana, 50, 176–181.CrossRefGoogle Scholar
Herman, S. S. (1963). Vertical migration of the opossum shrimp, Neomysis americana. Limnology and Oceanography, 8, 228–238.CrossRefGoogle Scholar
Herring, P. J. and Roe, H. S. J. (1988). The photoecology of pelagic decapods. Symposia of the Zoological Society of London, 59, 263–290.Google Scholar
Hersey, J. B. and Moore, H. B. (1948). Progress report on scattering layer observations in the Atlantic Ocean. Transactions of the American Geophysical Union, 29(3), 341–354.CrossRefGoogle Scholar
Hill, A. E. (1991a). A mechanism for horizontal zooplankton transport by vertical migration in tidal currents. Marine Biology, 111, 485–492.CrossRefGoogle Scholar
Hill, A. E. (1991b). Vertical migration in tidal currents. Marine Ecology Progress Series, 75, 39–54.CrossRefGoogle Scholar
Hill, A. E. (1994). Horizontal zooplankton dispersal by diel vertical migration in solar tidal currents on the northwest European continental shelf. Continental Shelf Research, 14(5), 491–506.CrossRefGoogle Scholar
Hoffman, K. (1982). Time-compensated celestial orientation. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 4, 49–62.
Hopkins, C. C. E. and Gulliksen, B. (1978). Diurnal vertical migration and zooplankton-epibenthos relationships in a north Norwegian fjord. European Marine Biology Symposia, 12, 271–280.Google Scholar
Hough, A. R. and Naylor, E. (1991). Field studies on retention of the planktonic copepod Eurytemora affinis in a mixed estuary. Marine Ecology Progress Series, 76, 115–122.CrossRefGoogle Scholar
Hough, A. R. and Naylor, E. (1992). Endogenous rhythms of circatidal swimming activity in the estuarine copepod Eurytemora affinis (Poppe). Journal of Experimental Biology and Ecology, 161, 27–32.CrossRefGoogle Scholar
Howie, D. I. D. (1984). The reproductive biology of the lugworm Arenicola marina L. Fortschrifte der Zoologie, 29, 247–263.Google Scholar
Hsiao, S. M. and Meier, A. H. (1989). Comparison of semilunar cycles of spawning activity in Fundulus grandis and F. heteroclitus held under constant laboratory conditions. Journal of Experimental Zoology, 252, 213–218.CrossRefGoogle Scholar
Hsiao, S. M. and Meier, A. H. (1992). Free-running circasemilunar spawning rhythm of Fundulus grandis and its temperature compensation. Fish Physiology and Biochemistry, 10(3), 259–265.CrossRefGoogle Scholar
Hsiao, S. M., Greeley, M. S. J. and Wallace, R. A. (1994). Reproductive cycling in female Fundulus heteroclitus. Biological Bulletin, 186, 271–284.CrossRefGoogle ScholarPubMed
Huberman, A. (1996). Neurodepressing hormone (NDH): fact or fiction?Crustaceana 69, 1–18.CrossRefGoogle Scholar
Huberman, A., Arechiga, H., Cimet, A.Rosa, J. and Aramburo, C. (1979). Isolation and purification of a neurodepressing hormone from the eyestalk of Procambarus bouvieri Ortmann. European Journal of Biochemistry, 99, 203–208.CrossRefGoogle ScholarPubMed
Hunter, E., Metcalfe, J. D., O'Brian, C. M., Arnold, G. P. and Reynolds, J. D. (2004). Vertical activity patterns of free-swimming adult plaice in the southern North Sea. Marine Ecology Progress Series, 279, 261–273.CrossRefGoogle Scholar
Hughes, R. N. (1983). Evolutionary ecology of reef organisms, with particular reference to corals. Biological Journal of the Linnaean Society, 20, 39–58.CrossRefGoogle Scholar
Irigoien, X., Conway, D. V. P. and Harris, R. P. (2004). Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Marine Ecology Progress Series, 267, 85–97.CrossRefGoogle Scholar
Itoh, M. T. and Sumi, Y. (1998). Melatonin and serotonin N-acetyltransferase activity in developing eggs of the cricket Gryllus bimaculatus. Brain Research, 81, 90–99.Google Scholar
Iwasaki, H., Williams, S. B., Kitayama, Y. et al. (2000). A kai C–interacting histidine kinase, sosa, necessary to sustain robust circadian oscillation in cyanobacteria. Cell, 101, 223–233.CrossRefGoogle Scholar
Jacklett, J. W. (1969). Circadian rhythm of optic nerve impulses recorded in darkness from the isolated eye of Aplysia. Science, 164, 562–563.CrossRefGoogle Scholar
Jacklett, J. W. (1974). The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia. Journal of Comparative Physiology, 90, 33–45.CrossRefGoogle Scholar
Jacklett, J. W. (1982). Circadian clock mechanisms. In Biological Timekeeping, ed Brady, J.. Society for Experimental Biology Seminar Series, 14, 173–188.
Jager, Z. (1998). Accumulation of flounder larvae Platichthys flesus (L.) in the Dollard (Ems estuary), Wadden Sea. Journal of Sea Research, 40, 43–57.CrossRefGoogle Scholar
Jager, Z. (1999a). Floundering: processes of tidal transport and accumulation of larval flounder (Platichthys flesus L.) in the Ems–Dollard nursery. Wageningen: Ponsen and Looijen, 192 pp.Google Scholar
Jager, Z. (1999b). Selective tidal stream transport of flounder larvae (Platichthys flesus L.) in the Dollard (Ems estuary). Estuarine Coastal and Shelf Science, 49, 347–362.CrossRefGoogle Scholar
Jeffs, A., Tolimieri, N. and Montgomery, J. C. (2003). Crabs on cue for the coast: the use of underwater sound for orientation by pelagic crabs. Marine and Freshwater Research, 54, 841–845.CrossRefGoogle Scholar
Johannes, R. E. (1978). Reproductive strategies of coastal marine fishes in the tropics. Environmental Biology of Fishes, 3, 65–84.CrossRefGoogle Scholar
Johnson, C. H., Roeber, J. and Hastings, J. W. (1984). Circadian changes in enzyme concentration account for rhythm of enzyme activity in Gonyaulax. Science, 223, 1428–1430.CrossRefGoogle ScholarPubMed
Johnson, C. R. (2001). Endogenous timekeepers in photosynthetic organisms. Annual Review of Physiology, 63, 695–728.CrossRefGoogle ScholarPubMed
Jones, S. (1999). Almost Like a Whale. London: Doubleday, 499 pp.Google Scholar
Jones, D. A. and Hobbins, C. St. C. (1985). The role of biological rhythms in some sand-beach isopod cirolanid crustaceans. Journal of Experimental Marine Biology and Ecology, 93, 47–59.CrossRefGoogle Scholar
Jones, D. A. and Naylor, E. (1970). The swimming rhythm of the sand-beach isopod Eurydice pulchra. Journal of Experimental Biology and Ecology, 4, 188–199.CrossRefGoogle Scholar
Kain, J. M. (1989). The seasons in the subtidal. British Phycological Journal, 24, 203–215.CrossRefGoogle Scholar
Kando, T., Tsinoreman, N. F., Golden, S. S. et al. (1994). Circadian clock mutants of cyanobacteria. Science, 266, 1233–1236.CrossRefGoogle Scholar
Karban, R. (1982). Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology, 63, 321–328.CrossRefGoogle Scholar
Keeble, F. (1910). Plant Animals: A Study in Symbiosis. Cambridge, UK: Cambridge University Press, 163 pp.Google Scholar
Kelly, P., Sulkin, S. D. and Heukelem, L.. (1982). A dispersal model for larvae of the deep sea red crab Geryon quinquidens based upon behavioral regulation of vertical migration in the hatching stage. Marine Biology, 72, 35–43.CrossRefGoogle Scholar
Kennedy, B. and Pearse, J. S. (1975). Lunar synchronization of the monthly reproductive rhythm in the sea urchin Centrostephanus coronatus Verrill. Journal of Experimental Marine Biology and Ecology, 17, 323–331.CrossRefGoogle Scholar
Kennedy, F., Naylor, E. and Jaramillo, E. (2000). Ontogenetic differences in the circadian locomotor activity rhythm of the talitrid amphipod crustacean Orchestoidea tuberculata. Marine Biology, 137, 511–517.CrossRefGoogle Scholar
Klapow, L. A. (1976). Tidal and lunar rhythms of an intertidal crustacean. In Biological Rhythms in the Marine Environment, ed. DeCoursey, P. J.. SC Columbia, USA: University of South Carolina Press, pp. 215–224.Google Scholar
Kleinhoonte, A. (1928). De door het licht geregelde autonome bewegwigen der Canavalia bladeren. Ph.D. Thesis, University of Delft.
Kluge, M. (1982). Biochemical rhythms in plants. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 14, 159–172.
Knight-Jones, E. W. (1952). Reproduction of oysters in the Rivers Crouch and Roach, Essex, during 1947, 1948 and 1949. Ministry of Agriculture, Fisheries and Food, Fisheries Investigations, Series II, 18(2), 1–43.Google Scholar
Knight-Jones, E. W. and Morgan, E. (1966). Responses of marine animals to changes in hydrostatic pressure. Oceanography and Marine Biology Annual Reviews, 4, 267–299.Google Scholar
Knights, A. M., Crow, T. P. and Burnell, G. (2006). Mechanisms of larval transport: vertical distribution of bivalve larvae varies with tidal conditions. Marine Ecology Progress Series, 326, 167–174.CrossRefGoogle Scholar
Konopka, R. J. and Benzer, S. (1971). Clock mutants in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 68, 2112–2116.CrossRefGoogle ScholarPubMed
Korringa, P. (1957). Lunar periodicity. Memoirs of the Geological Society of America, 67, 917–934.CrossRefGoogle Scholar
Kramer, G. (1952). Experiments on bird migration. Ibis, 94, 265–285.CrossRefGoogle Scholar
Larimer, J. L. and Smith, J. T. F. (1980). Circadian rhythm of retinal sensitivity in crayfish: modulation by cerebral and optic ganglia. Journal of Comparative Physiology, 136, 313–326.CrossRefGoogle Scholar
Last, K. S., Bailhache, T., Kramer, C., Kiriacou, C. P.et al. (2009). Tidal, daily and lunar-day activity cycles in the marine polychaete Nereis virens. Chronobiology International 26(2), 167–183.CrossRefGoogle ScholarPubMed
Lee, J. W. and Williamson, D. I. (1975). The vertical distribution and diurnal migration of copepods at different stations in the Irish Sea. Journal of the Oceanographical Society of Japan, 31, 199–211.CrossRefGoogle Scholar
Lickey, M. E. and Wozniak, J. (1979). Circadian organization in Aplysia explored with red light, eye removal and behavioural recording. Journal of Comparative Physiology, 131, 169–177.CrossRefGoogle Scholar
Lockwood, A. P. M. (1976). Physiological adaptation to life in estuaries. In Adaptation to Environment: Essays on the Physiology of Marine Animals, ed. Newell, R. C.. London: Butterworths, pp. 315–392.CrossRefGoogle Scholar
Lohmann, K. J. and Lohmann, C. M. F. (2006). Sea turtles, lobsters and oceanic maps. Marine and Freshwater Behaviour and Physiology, 39, 49–64.CrossRefGoogle Scholar
Lohmann, K. J. and Willows, A. O. D. (1987). Lunar-modulated geomagnetic orientation by a marine mollusc. Science, 235, 331–334.CrossRefGoogle Scholar
Lohmann, K. J., Lohmann, C. F., Erhart, L. M., Bagley, D. A. and Swing, T. (2004). Geomagnetic map used in sea-turtle navigation. Nature, 428, 909–910.CrossRefGoogle ScholarPubMed
Longhurst, A. R. (1976). Vertical migration. In The Ecology of the Seas, eds. Cushing, D. H. and Walsh, J. J.. Oxford, UK: Blackwell, pp. 116–137.Google Scholar
Lűning, K. (1991). Circannual growth rhythm in a brown alga Pterygophora californica. Botanica Acta, 104, 157–162.CrossRefGoogle Scholar
Lűning, K. (2005). Endogenous rhythms and day-length effects on macroalgal development. In Algal Culturing Techniques, ed Anderson, R. A.. London: Academic Press/Elsevier, pp. 347–364.Google Scholar
Lűning, K. and Kadel, P. (1993). Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronization of seasonal growth by daylength cycles in several other brown algae. Phycologia, 32, 379–387.CrossRefGoogle Scholar
Lynch, B. R. and Rochette, R. (2007). Circatidal rhythm of free-roaming sub-tidal green crabs Carcinus maenas, revealed by radio-acoustic telemetry. Crustaceana, 80, 345–355.CrossRefGoogle Scholar
Macpherson, E. and Raventos, N. (2006). Relationship between pelagic larval duration and geographical distribution of Mediterranean littoral fishes. Marine Ecology Progress Series, 327, 257–265.CrossRefGoogle Scholar
Makarov, V. N., Schoschina, E. V. and Lűning, K. (1995). Diurnal and circadian periodicity of mitosis and growth in marine algae. I. Juvenile sporophytes of Laminariales (Phaeophyta). European Journal of Phycology, 30, 261–266.CrossRefGoogle Scholar
Marshall, S. M. and Orr, A. P. (1955). The Biology of a Marine Copepod. London: Oliver and Boyd, 195 pp.Google Scholar
Marta-Almeida, M., Dubert, J, Peliz, A. and Queiroga, H. (2006). Influence of vertical migration pattern on retention of crab larvae in a seasonal upwelling system. Marine Ecology Progress Series, 307, 1–19.CrossRefGoogle Scholar
Martin, H and Martin, U. (1987). Transfer of a time-signal isochronous with local time in translocation experiments to the geographical longitude. Journal of Comparative Physiology A, 160, 3–9.CrossRefGoogle Scholar
Martin, L. (1907). La memoire chez Convoluta roscoffensis. Comptes rendu hebdomadaire des séances de l'Acadamie des sciences, 145, 555–557.Google Scholar
Massa, B., Benvenuti, P., Lo Valvo, M. and Papi, F. (1991). Homing of Cory's shearwaters (Calonectris diomedea) carrying magnets. Bollettino di Zoologia, 58, 245–247.CrossRefGoogle Scholar
Matthews, G. V. T. (1968). Bird Migration. Cambridge, UK: Cambridge University Press.Google Scholar
McLachlan, A., Wooldridge, T. and Horst, G. (1979). Tidal movements of the macrofauna on an exposed sandy beach in South Africa. Journal of Zoology, London, 188, 433–442.Google Scholar
McGaw, I. J. and Naylor, E. (1992). Salinity preference behaviour of the shore crab Carcinus maenas in relation to colouration during intermoult and to prior acclimation. Journal of Experimental Marine Biology and Ecology, 155, 145–159.CrossRefGoogle Scholar
McLusky, D. M. (1981). The Estuarine Ecosystem. Glasgow and London: Blackie, 150 pp.Google Scholar
Menaker, M. (1976). A ‘terrestrial’ biologist looks at biorhythms in the marine environment. In Biological Rhythms in the Marine Environment, ed. DeCoursey, P. J.. Columbia, SC, USA: University of South Carolina Press, pp. 273–278.Google Scholar
Menaker, M. and Tosini, G. (1996). The evolution of vertebrate circadian systems. In Circadian Organization and Oscillatory Coupling. Proceedings of the VIth Sapporo Symposium on Biological Rhythms. Sapporo, Japan: Hokkaido University Press, pp. 39–52.Google Scholar
Meschini, E., Gagliardo, A. and Papi, F. (2008). Lunar orientation in sandhoppers is affected by shifting both the moon phase and the daily clock. Animal Behaviour, 76, 25–35.CrossRefGoogle Scholar
Metcalfe, J. D., Arnold, G. P. and Webb, P. W. (1990). The energetics of migration by selective tidal stream transport: an analysis of plaice tracked in the southern North Sea. Journal of the Marine Biological Association UK, 70, 149–162.CrossRefGoogle Scholar
Metcalfe, J. D., Hunter, E. and Buckley, A. A. (2006). The migratory behaviour of North Sea plaice: currents, clocks and clues. Marine and Freshwater Behaviour and Physiology, 39(1), 25–36.CrossRefGoogle Scholar
Mezzetti, M. C., Naylor, E. and Scapini, F. (1994). Rhythmic responsiveness to visual stimuli in different populations of talitrid amphipods from Atlantic and Mediterranean coasts: an ecological interpretation. Journal of Experimental Marine Biology and Ecology, 181, 279–291.CrossRefGoogle Scholar
Michael, E. L. (1911). Classification and vertical distribution of the chaetognaths of the San Diego region. University of California Publications in Zoology, 8, 21.Google Scholar
Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H. and Arai, T. (1986). Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, 323, 720–722.CrossRefGoogle Scholar
Moore, H. B. and Corwen, E. G. (1956). The effects of temperature, illumination and pressure on the vertical distribution of zooplankton. Bulletin of Marine Science of the Gulf and Caribbean, 6, 273–287.Google Scholar
Morgan, E. (1965). The activity rhythm of the amphipod Corophium volutator (Pallas) and its possible relationship to changes in hydrostatic pressure associated with the tides. Journal of Animal Ecology, 34, 731–746.CrossRefGoogle Scholar
Morgan, E. (2001). The moon and life on earth. Earth, Moon and Planets, 85–86, 279–290.Google Scholar
Morgan, S. G. (1996). Influence of tidal variations on reproductive timing. Journal of Experimental Marine Biology and Ecology, 206, 237–251.CrossRefGoogle Scholar
Morgan, S. G. and Christy, J. H. (1994). Plasticity, constraint and optimality in reproductive timing. Ecology, 75, 2185–2203.CrossRefGoogle Scholar
Morgan, S. G. and Christy, J. H. (1995). Adaptive significance of the timing of larval release by crabs. American Nature, 145, 457–479.CrossRefGoogle Scholar
Morgan, S. G. and Christy, J. H. (1997). Planktivorous fishes as selective agents for reproductive synchrony. Journal of Experimental Marine Biology and Ecology, 209, 89–101.CrossRefGoogle Scholar
Morse, D., Fritz, L. and Hastings, J. W. (1990). What is the clock? Translational regulation of circadian bioluminescence. Trends in Biochemical Science, 15, 262–265.CrossRefGoogle ScholarPubMed
Műller, D. (1962). Uber jahres und lunarperiodische Erscheinungen bei einigen Braunalgen. Botanica Marina, 4, 140–155.CrossRefGoogle Scholar
Munro Fox, H. (1923). Lunar periodicity in reproduction. Proceedings of the Royal Society of London, B, 155, 523–549.Google Scholar
Munro Fox, H. (1928). SELENE, or Sex and the Moon. London: Kegan Paul, Trench, Trubener and Co., 84 pp.Google Scholar
Murray, J. (1885). Narrative Report of the Challenger Expedition. London.Google Scholar
Naylor, E. (1958). Tidal and diurnal rhythms of locomotory activity in Carcinus maenas (L.). Journal of Experimental Biology, 35, 602–610.Google Scholar
Naylor, E. (1960). Locomotory rhythms in Carcinus maenas (L.) from non-tidal conditions. Journal of Experimental Biology, 37, 481–488.Google Scholar
Naylor, E. (1961). Spontaneous locomotor rhythm in Mediterranean Carcinus. Pubblicazioni della Stazione Zoologica di Napoli, 32, 58–63.Google Scholar
Naylor, E. (1962). Seasonal changes in a population of Carcinus maenas (L.) in the littoral zone. Journal of Animal Ecology, 31, 601–609.CrossRefGoogle Scholar
Naylor, E. (1963). Temperature relationships of the locomotor rhythm of Carcinus. Journal of Experimental Biology, 40, 669–679.Google Scholar
Naylor, E. (1976). Rhythmic behaviour and reproduction in marine animals. In Adaptation to Environment, ed. Newell, R. C.. London: Butterworths, pp. 393–429.CrossRefGoogle Scholar
Naylor, E. (1982). Tidal and lunar rhythms in animals and plants. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 14, 33–48.
Naylor, E. (1985). Tidally rhythmic behaviour of marine animals. Symposia of the Society for Experimental Biology, 39, 63–93.Google ScholarPubMed
Naylor, E. (1988). Rhythmic behaviour of decapod crustaceans. Symposia of the Zoological Society of London, 59, 177–199.Google Scholar
Naylor, E. (1996). Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor of Carcinus maenas. Chronobiology International, 13, 153–161.CrossRefGoogle ScholarPubMed
Naylor, E. (1997). Crab clocks re–wound. Chronobiology International, 14, 427–430.CrossRefGoogle Scholar
Naylor, E. (2001). Marine animal behaviour in relation to lunar phase. Earth, Moon and Planets, 85–86, 291–302.Google Scholar
Naylor, E. (2002). Coastal animals that anticipate time and tide. Ocean Challenge, 11(3), 21–26.Google Scholar
Naylor, E. (2005). Chronobiology: implications for marine resource exploitation and management. Scientia Marina, 69, 157–167.CrossRefGoogle Scholar
Naylor, E. (2006). Orientation and navigation in coastal and estuarine zooplankton. Marine and Freshwater Behaviour and Physiology, 39(1), 13–24.CrossRefGoogle Scholar
Naylor, E. and Atkinson, R. J. A. (1972). Pressure and the rhythmic behaviour of inshore animals. Symposia of the Society for Experimental Biology, 25, 395–415.Google Scholar
Naylor, E. and Atkinson, R. J. A. (1976). Rhythmic behaviour of Nephrops and some other marine crustaceans. In Perspectives in Experimental Biology, I, ed. Davies, P. Spencer. Oxford: Pergamon Press, pp. 135–143.Google Scholar
Naylor, E. and Isaac, M. J. (1973). Behavioural significance of pressure responses in megalopa larvae of Callinectes sapidus and Macropipus sp. Marine Behaviour and Physiology, 1, 341–350.CrossRefGoogle Scholar
Naylor, E. and Williams, B. G. (1968). Effects of eyestalk removal on rhythmic locomotor activity in Carcinus. Journal of Experimental Biology, 49, 107–116.Google Scholar
Naylor, E. and Williams, B. G. (1984). Phase-responsiveness of the circatidal locomotor activity rhythm of Hemigrapsus edwardsii (Hilgendorf) to high tide. Journal of the Marine Biological Association UK, 64, 81–90.CrossRefGoogle Scholar
Naylor, E., Smith, G. and Williams, B. G. (1971). The role of the eyestalk in the tidal activity rhythm of the shore crab Carcinus maenas (L.). In Neurobiology of Invertebrates, ed. Salánki, J.. Budapest: Akadémiai Kiadó, pp. 423–429.Google Scholar
Neil, W. E. (1992). Population variation in the ontogeny of predator-induced vertical migration of copepods. Nature, 356, 54–57.CrossRefGoogle Scholar
Nelson, J. (1912). Report of the Biological Department of the New Jersey Agricultural Experiment Station for the year 1911.
Neumann, D. (1965). Photoperiodische steuerung der 15-tagigen lunaren metamorphose Periodik von Clunio population (Diptera, Chironomidae). Zeitschrift fur Naturforschung, 206, 818–819.Google Scholar
Neumann, D. (1976a). Entrainment of a semi-lunar rhythm by simulated cycles of mechanical disturbance. Journal of Experimental Marine Biology and Ecology, 35, 73–85.CrossRefGoogle Scholar
Neumann, D. (1976b). Entrainment of a semilunar rhythm. In Biological Rhythms in the Marine Environment, ed. DeCoursey, P. J.. Columbia, SC, USA: University of South Carolina Press, pp. 115–127.Google Scholar
Neumann, D. (1981). Tidal and lunar rhythms. In Handbook of Behavioural Neurobiology, 4, ed. Aschoff, J.. New York: Plenum Press, pp. 351–380.Google Scholar
Neumann, D. (1987). Tidal and lunar adaptations of reproductive activities in invertebrate species. In Comparative Physiology of Environmental Adaptations, III, ed. Pevet, L.. Basel: Karger, pp. 152–170.Google Scholar
Nichols, J. H., Thompson, B. M. and Cryer, M. (1982). Production, drift and mortality of the planktonic larvae of the edible crab (Cancer pagurus) off the north east coast of England. Netherlands Journal of Sea Research, 16, 173–184.CrossRefGoogle Scholar
Njus, D., Sulzman, F. and Hastings, J. W. (1974). Membrane model for the circadian clock. Nature, 248, 116–120.CrossRefGoogle ScholarPubMed
Northcott, S. J., Gibson, R. N. and Morgan, E. (1990). The persistence and modulation of endogenous circatidal rhythmicity in Lipophrys pholis (Teleostei). Journal of the Marine Biological Association UK, 70, 815–827.CrossRefGoogle Scholar
Northcott, S. J., Gibson, R. N. and Morgan, E. (1991). Phase-resposiveness and modulation of endogenous circatidal rhythmicity in Lipophrys pholis (Teleostei). Journal of Experimental Marine Biology and Ecology, 148, 47–57.CrossRefGoogle Scholar
Nultsch, W., Rűffer, U. and Pfau, J. (1984). Circadian rhythms in chromatophore movements of Dictyota dichotoma. Marine Biology, 81, 217–222.CrossRefGoogle Scholar
Olive, P. J. W., Lewis, C. and Beardall, V. (2000). Fitness components of seasonal reproduction: an analysis using Nereis virens as a life history model. Oceanologica Acta, 23, 377–389.CrossRefGoogle Scholar
Ouyang, Y., Anderson, C. R., Kondo, T., Golden, S. S. and Johnson, C. H. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proceedings of the National Academy of Sciences, Washington, 951, 8660–8664.CrossRefGoogle Scholar
Page, T. L. and Barrett, R. K. (1987). Effects of light on pacemaker development. Journal of Comparative Physiology A, 165, 51–59.CrossRefGoogle Scholar
Page, T. L. and Larimer, J. L. (1972). Entrainment of the circadian locomotor activity rhythm in crayfish. Journal of Comparative Physiology, 78, 107–120.CrossRefGoogle Scholar
Page, T. L. and Larimer, J. L. (1975a). Neural control of circadian rhythmicity in the crayfish: I. The locomotor rhythm. Journal of Comparative Physiology, 97, 59–80.CrossRefGoogle Scholar
Page, T. L. and Larimer, J. L. (1975b). Neural control of circadian rhythm in crayfish: II. The ERG amplitude rhythm. Journal of Comparative Physiology, 97, 81–96.CrossRefGoogle Scholar
Palmer, J. D. (1974). Biological Clocks in Marine Animals. New York/London: Wiley and Sons, 173 pp.Google Scholar
Palmer, J. D. (1976). Clock-controlled vertical migration rhythms in intertidal organisms. In Biological Rhythms in the Marine Environment, ed. Decoursey, P. J.. Columbia, SC, USA: University of South Carolina Press, pp. 239–255.Google Scholar
Palmer, J. D. (1995a). The Biological Rhythms and Clocks of Intertidal Animals. Oxford, UK: Oxford University Press, 217 pp.Google Scholar
Palmer, J. D. (1995b). Review of the dual clock control of tidal rhythms and the hypothesis that the same clock controls both circatidal and circadian rhythms. Chronobiology International, 12(5), 299–310.CrossRefGoogle Scholar
Palmer, J. D. (1997). Duelling hypotheses: circatidal versus circalunidian battle basics. Chronobiology International, 14, 337–346.CrossRefGoogle Scholar
Palmer, J. D. and Round, F. E. (1965). Persistent, vertical-migration rhythms in benthic microflora: I. The effect of light and temperature on the rhythmic behaviour of Euglena obtusata. Journal of the Marine Biological Association UK, 45, 567–582.CrossRefGoogle Scholar
Pape, C. and Lüning, K. (2006). Quantification of melatonin in phototrophic organisms. Journal of Pineal Research, 41, 157–165.CrossRefGoogle ScholarPubMed
Papi, F. (2006). Navigation of marine, freshwater and coastal animals: concepts and current problems. Marine and Freshwater Behaviour and Physiology, 39, 3–12.CrossRefGoogle Scholar
Papi, F. and Pardi, L. (1953). Ricerche sull'orientamento di Talitrus saltator (Montagu)(Crustacea, Amphipoda). II. Zeitschrifte fur vergleichende Physiologie, 35, 430–518.Google Scholar
Papi, F., Luschi, P., Åkesson, S., Capogrossi, S. and Hays, G. C. (2000). Open-sea migration of magnetically disturbed sea turtles. Journal of Experimental Biology, 203, 3435–3443.Google ScholarPubMed
Pardi, L. and Ercolini, A. (1986). Zonal recovery mechanisms in talitrid crustaceans. Bollettino di Zoologia, 53, 139–160.CrossRefGoogle Scholar
Pardi, L. and Papi, F. (1953). Ricerche sull'orientamento di Talitrus saltator (Montagu)(Crustacea, Amphipoda). I. Zeitschrift fur vergleischende Physiologie, 35, 459–489.Google Scholar
Perkins, E. J. (1974). The Biology of Estuaries and Coastal Waters. London: Academic Press, 678 pp.Google Scholar
Permata, W. D., Kinzi, R. A. and Hidaka, M. (2000). Histological studies on the origin of planulae of the coral Pocillopora damicornis. Marine Ecology Progress Series, 200, 191–200.CrossRefGoogle Scholar
Petpiroon, S. and Morgan, E. (1983). Observations on the tidal activity rhythm of the periwinkle Littorina nigrolineata (Gray). Marine Behaviour and Physiology, 9, 171–192.CrossRefGoogle Scholar
Phillips, B. F. (1977). A review of the larval ecology of rock lobsters. In Workshop on Lobster and Rock Lobster Ecology and Physiology, 7, eds. Phillips, B. F. and Cobb, J. S.. Australia: CSIRO, pp. 175–185.Google Scholar
Phillips, B. F. (1981). The circulation of the southeastern Indian Ocean and the planktonic life of the western rock lobster. Oceanography and Marine Biology Annual Reviews, 19, 11–39.Google Scholar
Pineda, J. (1994). Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and onshore transport of neustonic larvae. Journal of Marine Research, 52, 427–458.CrossRefGoogle Scholar
Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology, 25, 159–184.CrossRefGoogle ScholarPubMed
Pittendrigh, C. S. (1961). On temporal organization in living systems. Harvey Lecture Series, 56, 93–125.Google Scholar
Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55, 17–54.CrossRefGoogle ScholarPubMed
Pittendrigh, C. S. and Minnis, D. H. (1972). Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Science USA, 69, 1537–1539.CrossRefGoogle ScholarPubMed
Prince, P. A., Wood, A. G., Barton, T. and Croxall, J. P. (1992). Satellite tracking of wandering albatrosses (Diomedea exulans) in the south Atlantic. Antarctic Science, 4, 31–36.CrossRefGoogle Scholar
Pugh, D. T. (1987). Tides, Surges and Mean Sea–level. Chichester, UK: J. Wiley and Sons, 472 pp.Google Scholar
Quinn, T. P. and Brannon, E. L. (1982). The use of celestial and magnetic cues by orienting sockeye salmon smolts. Journal of Comparative Physiology, 147, 547–552.CrossRefGoogle Scholar
Rajan, K. P., Kharouf, H. H. and Lockwood, A. P. M. (1979). Rhythmic cycles of blood sugar concentrations in the crab Carcinus maenas. European Marine Biology Symposia, 13, 415–422.Google Scholar
Ralph, M. R., Foster, R. G., Davis, F. L. and Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247, 975–978.CrossRefGoogle ScholarPubMed
Reid, D. G. (1988). The diurnal modulation of the circatidal activity rhythm by feeding in the isopod Eurydice pulchra. Marine Behaviour and Physiology, 6, 273–285.CrossRefGoogle Scholar
Reid, D. G. and Naylor, E. (1985). Free-running, endogenous semilunar rhythmicity in a marine isopod crustacean. Journal of the Marine Biological Association UK, 65, 85–91.CrossRefGoogle Scholar
Reid, D. G. and Naylor, E. (1986). An entrainment model for semilunar rhythmic swimming behaviour in the marine isopod Eurydice pulchra Leach. Journal of Experimental Marine Biology and Ecology, 100, 25–35.CrossRefGoogle Scholar
Reid, D. G. and Naylor, E. (1989). Are there separate circatidal and circadian clocks in the shore crab Carcinus maenas?Marine Ecology Progress Series, 52, 1–6.CrossRefGoogle Scholar
Reid, D. G. and Naylor, E. (1990). Entrainment of bi-modal circatidal rhythms in the shore crab Carcinus maenas. Journal of Biological Rhythms, 5, 333–447.CrossRefGoogle Scholar
Reid, D. G., Warman, C. G. and Naylor, E. (1992). Ontogenetic changes in zeitgeber action in the tidally rhythmic behaviour of the shore crab Carcinus maenas (L.). European Marine Biological Symposia, 27, 129–133.Google Scholar
Richardson, C. A. (1987). Microgrowth patterns in the shell of the Malaysian cockle Anadara granosa (L.) and their use in age determination. Journal of Experimental Marine Biology and Ecology, 111, 77–98.CrossRefGoogle Scholar
Richardson, C. A. (1989). An analysis of the microgrowth bands in the shell of the common mussel Mytilus edulis. Journal of the Marine Biological Association UK, 69, 477–491.CrossRefGoogle Scholar
Rimmer, D. W. and Phillips, B. F. (1979). Diurnal migration and vertical distribution of phyllosoma larvae of the western rock lobster Palinurus cygnus. Marine Biology, 54, 109–124.CrossRefGoogle Scholar
Ritz, D. A. (1994). Social aggregation in pelagic invertebrates. Advances in Marine Biology, 30, 155–216.CrossRefGoogle Scholar
Rodriguez, G. and Naylor, E. (1972). Behavioural rhythms in littoral prawns. Journal of the Marine Biological Association UK, 52, 81–95.CrossRefGoogle Scholar
Roe, H. S. J. (1974). Observations on the diurnal vertical migrations of an oceanic animal community. Marine Biology, 28, 99–113.CrossRefGoogle Scholar
Roe, H. S. J. (1983). Vertical distribution of euphausiids and fish in relation to light intensity in the north eastern Atlantic. Marine Biology, 77, 287–298.CrossRefGoogle Scholar
Roe, H. S. J. (1984). The diel migrations and distributions within a mesopelagic community in the north east Atlantic. 2. Vertical migrations and feeding of mysids and decapod Crustacea. Progress in Oceanography, 13, 269–318.CrossRefGoogle Scholar
Roenneberg, T. and Morse, D. (1993). Two circadian oscillators in one cell. Nature, 362, 362–364.CrossRefGoogle ScholarPubMed
Rose, M. (1925). Contributiona l'etude de la Biologique du Plankton. Le probleme des migrations verticals journalieres. Archives de Zoologie Experimentale et Generale, 64, 387–542.Google Scholar
Round, F. E. and Palmer, J. D. (1966). Persistent vertical migration rhythms in benthic microflora. II. Field and laboratory studies of diatoms from the banks of the River Avon. Journal of the Marine Biological Association UK, 46, 191–214.CrossRefGoogle Scholar
Russell, F. S. (1925). The vertical distribution of marine macro-plankton: an observation on diurnal changes. Journal of the Marine Biological Association UK, 13, 769–809.CrossRefGoogle Scholar
Russell, F. S. (1927). The vertical distribution of plankton in the sea. Biological Reviews, 2(3), 213–262.CrossRefGoogle Scholar
Ryland, J. S. (2000). European marine biology: past, present and future. Biologia Marina Mediterranea, 7, 1–27.Google Scholar
Saigusa, M. (1980). Entrainment of a semilunar rhythm by simulated moonlight cycle on the terrestrial crab, Sesarma haematocheir. Oecologia, 46, 38–44.CrossRefGoogle ScholarPubMed
Saigusa, M. (1982). Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma; harmony with the semilunar timing and its adaptive significance. Biological Bulletin, 162, 371–386.CrossRefGoogle Scholar
Saigusa, M. (1986). The circatidal rhythm of larval release in the incubating crab, Sesarma. Journal of Comparative Physiology, 159, 21–31.CrossRefGoogle Scholar
Sato, M. and Jumars, P. A. (2008). Seasonal and vertical variations in emergence behaviour of Neomysis americana. Limnology and Oceanography, 53(4), 1665–1677.CrossRefGoogle Scholar
Saunders, D. S. (1972). Circadian control of larval growth in Sarcophaga argyrostoma. Proceedings of the National Academy of Sciences USA, 69, 2738–2740.CrossRefGoogle ScholarPubMed
Saunders, D. S. (1982). Photoperiodism in animals and plants. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 14, 65–82.
Scapini, F. (1986). Inheritance of solar direction–finding in sandhoppers. 4. Variation in the accuracy of orientation with age. Monitore Zoologia Italiano, 20, 53–61.Google Scholar
Scapini, F. and Buiatti, M. (1985). Inheritance of solar direction-finding in sandhoppers. Journal of Comparative Physiology A, 157, 433–440.CrossRefGoogle Scholar
Scapini, F., Rossano, C., Marchetti, G. M. and Morgan, E. (2005). The role of the biological clock in the sun–compass orientation of free-running individuals of Talitrus saltator. Animal Behaviour, 69(4), 835–843.CrossRefGoogle Scholar
Schaffelke, B. and Lűning, K. (1994). A circannual rhythm controls seasonal growth in the kelps Laminaria hyperborea and L. digitata from Helgoland (North Sea). European Journal of Phycology, 29, 49–56.CrossRefGoogle Scholar
Scheltema, R. S. (1971). The dispersal of the larvae of shoal-water benthic invertebrates over long distances by ocean currents. European Marine Biology Symposia, 4, 7–28.Google Scholar
Scheltema, R. S. (1975). Relationship of larval dispersal, gene-flow and natural selection to geographical variation of benthic invertebrates in estuaries and along coastal regions. In Estuarine Research, I, ed. Cronin, L. E.. New York: Academic Press, pp. 373–391.Google Scholar
Schweiger, H. G. and Schweiger, M. (1977). Circadian rhythms in unicellular organisms: an endeavour to explain the molecular mechanism. International Review of Cytology, 51, 315–342.CrossRefGoogle Scholar
Schmidt-Koenig, K. (1975). Avian Orientation and Navigation. London: Academic Press, 180 pp.Google Scholar
Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M.et al. (1995). Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science, 270, 808–810.CrossRefGoogle ScholarPubMed
Serfling, S. A. and Ford, R. F. (1975). Ecological studies of the puerulus larval stage of the Californian spiny lobster Panulirus interruptus. National Oceanic and Atmospheric Administration (USA), Fisheries Bulletin, 73, 360–367.Google Scholar
Shanks, A. L. (1995). Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In Ecology of Marine Invertebrate Larvae, ed. McEdward, L. R.. Boca Raton, Florida: CRC, pp. 323–368.Google Scholar
Shepard, E. L. C., Ahmed, M. Z., Southall, E. J. et al. (2006). Diel and tidal rhythms in diving behaviour of pelagic sharks identified by signal processing of archival tagged data. Marine Ecology Progress Series, 328, 205–213.CrossRefGoogle Scholar
Siegal, D. A., Kinlan, B. P., Gaylord, B. and Gaines, S. D. (2003). Lagrangian descriptions of marine larval dispersion. Marine Ecology Progress Series, 260, 83–96.CrossRefGoogle Scholar
Singarajah, K. V., Moyse, J. and Knight-Jones, E. W. (1967). The effect of feeding upon the phototactic behaviour of cirripede naulplii. Journal of Experimental Marine Biology and Ecology, 1, 144–153.CrossRefGoogle Scholar
Skov, M. W., Hartnoll, R. G., Ruwa, R. K. et al. (2005). Marching to a different drummer: crabs synchronize reproduction to a 14-month lunar-tidal cycle. Ecology, 86(5), 1164–1171.CrossRefGoogle Scholar
Skud, B. E. (1967). Responses of marine organisms during the solar eclipse of July 1963. US Fish and Wildlife Service Fishery Bulletin, 66, 259–271.Google Scholar
Smith, G. and Naylor, E. (1972). The neurosecretory system of the eyestalk of Carcinus maenas (Crustacea: Decapoda). Journal of Zoology, London, 166, 313–321.CrossRefGoogle Scholar
Smith, T. J. (1990). Phylogenetic distribution and function of arylalkylamine N-acetyltransferase. Bioassays, 12, 30–33.CrossRefGoogle ScholarPubMed
Southward, A. J. and Crisp, D. J. (1965). Activity rhythms in barnacles in relation to respiration and feeding. Journal of the Marine Biological Association UK, 45, 161–185.CrossRefGoogle Scholar
Sommer, H. H. (1972). Endogene und exogene periodik in der aktivitat eines mederen krebses (Balanus balanus L.). Zeitschrift fur vergleichende Physiologie, 76, 177–192.CrossRefGoogle Scholar
Sponaugle, S. and Pinkard, D. (2004). Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. Marine Ecology Progress Series, 267, 267–280.CrossRefGoogle Scholar
Steele, J. H. (1976). Patchiness. In The Ecology of the Seas, eds. Cushing, D. H. and Walsh, J. J.. Oxford, UK: Blackwell, pp. 98–115.Google Scholar
Stephan, F. K. and Nunez, A. A. (1977). Elimination of circadian rhythms in drinking, activity, sleep and temperature by isolation of the suprachiasmatic nuclei. Behavioral Biology, 20, 1–16.CrossRefGoogle ScholarPubMed
Strumwasser, F. (1965). The demonstration and manipulation of a circadian rhythm in a single neuron. In Circadian Clocks, ed. Aschoff, J.. Amsterdam: North Holland Publishing Co., pp. 442–462.Google Scholar
Sulkin, S. D. (1984). Behavioural basis of depth regulation in the larvae of brachyuran crabs. Marine Ecology Progress Series, 15, 181–205.CrossRefGoogle Scholar
Sulkin, S. D., Heukelem, W. F., Kelly, P and Heukelem, L. (1980). The behavioural basis of larval recruitment in the crab Callinectes sapidus Rathbun: a laboratory investigation of ontogenetic changes in geotaxis and barokinesis. Biological Bulletin, 159, 402–417.CrossRefGoogle Scholar
Suzuki, L. and Johnson, C. H. (2001). Algae know the time of day: circadian and photoperiodic programs. Journal of Phycology, 37, 933–942.CrossRefGoogle Scholar
Sweeney, B. M. (1969a). Rhythmic Phenomena in Plants. London/New York: Academic Press.Google Scholar
Sweeney, B. M. (1969b). Circadian rhythms in plants. In Physiology of Plant Growth and Development, ed. Wilkins, M. B.. London: McGraw Hill, pp. 647–671.Google Scholar
Sweeney, B. M. (1976). Pros and cons of the membrane model for circadian rhythms in the marine algae Gonyaulax and Acetabularia. In Biological Rhythms in the Marine Environment, ed. DeCoursey, P. J.. Columbia, SC, USA: University of South Carolina Press, pp. 63–76.Google Scholar
Sweeney, B. M. and Borgese, M. B. (1989). A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH 7803. Journal of Phycology, 25, 183–186.CrossRefGoogle Scholar
Sweeney, B. M. and Hastings, J. W. (1957). Characteristics of the diurnal rhythm of luminescence in Gonyaulax polyedra. Journal of Cellular and Comparative Physiology, 49, 115–128.CrossRefGoogle Scholar
Sweeney, B. M. and Haxo, F. T. (1961). Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science, 134, 1361–1363.CrossRefGoogle ScholarPubMed
Sweeney, B. M., Tuffli, C. F. and Rubin, R. H. (1967). The circadian rhythm of photosynthesis in Acetabularia in the presence of actinomycin D, puromycin and chloramphenicol. Journal of General Physiology, 50, 647–659.CrossRefGoogle Scholar
Tankersley, R. A., McKelvey, L. M. and Forward, R. B. (1995). Responses of estuarine crab megalopae to pressure, salinity and light: implications for flood-tide transport. Marine Biology, 122, 391–400.CrossRefGoogle Scholar
Tankersley, R. A., Welch, J. M. and Forward, R. B. (2002). Settlement time of blue crab (Callinectes sapidus) megalopae during flood-tide transport. Marine Biology, 141, 863–875.CrossRefGoogle Scholar
Taylor, A. C. and Naylor, E. (1977). Entrainment of the locomotor rhythm of Carcinus by cycles of salinity change. Journal of the Marine Biological Association UK, 57, 273–277.CrossRefGoogle Scholar
Tester, P. A., Cohen, J. H. and Cervetto, G. (2004). Reverse vertical migration and hydrographic distribution of Anomalocera ornata (Copepoda: Pontellidae) in the US South Atlantic Bight. Marine Ecology Progress Series, 268, 195–203.CrossRefGoogle Scholar
Thomas, B. and Vince-Prue, D. (1997). Photoperiodism in Plants. San Diego: Academic Press, 428 pp.Google Scholar
Thomas, N. J., Lasiak, T. A. and Naylor, E. (1981). Salinity preference behaviour in Carcinus. Marine Behaviour and Physiology, 7, 277–283.CrossRefGoogle Scholar
Thompson, W. F. (1919). The spawning of the grunion Leuresthes tenuis. Californian Fish and Game Committee Bulletin, 3, 1–29.Google Scholar
Thorson, G. (1964). Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia, 1, 167–208.CrossRefGoogle Scholar
Thurman, C. L. (2004). Unravelling the ecological significance of endogenous rhythms in intertidal crabs. Biological Rhythm Research, 35, 43–67.CrossRefGoogle Scholar
Tilberg, C. F., Kernehan, C. D., Andon, A. and Epifanio, C. E. (2008). Modeling estuarine ingress of blue crab megalopae: effects of temporal patterns of larval release. Journal of Plankton Research, 66, 391–412.Google Scholar
Tilden, A., McGann, L., Schwartz, J., Bowe, A. and Salazar, C. (2001). Effect of melatonin on haemolymph glucose and lactate levels in the fiddler crab Uca pugilator. Journal of Experimental Zoology A, 290, 379–383.CrossRefGoogle Scholar
Tilden, A. R., Shanahan, J. K., Khilji, Z. S. et al. (2003). Melatonin and locomotor activity in the fiddler crab Uca pugilator. Journal of Experimental Zoology A, 297, 80–87.CrossRefGoogle ScholarPubMed
Titlyanov, E. A., Titlyanov, T. V. and Lüning, K. (1996). Diurnal and circadian periodicity of mitosis and growth in marine macroalgae II. The green alga Ulva pseudocurvata. European Journal of Phycology, 31, 181–188.CrossRefGoogle Scholar
Uglow, J. (2002). The Lunar Men. London: Faber, 501 pp.Google Scholar
Ugolini, A. (2003). Activity rhythms and orientation in sandhoppers (Crustacea: Amphipoda). Frontiers in Biosciences, 8, 722–732.CrossRefGoogle Scholar
Ugolini, A., Somigli, S. and Mercatelli, L. (2005a). Green land and blue sea: a coloured landscape in the orientation of the sandhopper Talitrus saltator (Montagu) (Amphipoda: Talitridae). Journal of Experimental Biology, 209, 2509–2514.CrossRefGoogle Scholar
Ugolini, A., Boddi, V., Mercatelli, L. and Castellini, C. (2005b). Moon orientation in adult and young sand hoppers under artificial light. Proceedings of the Royal Society London, B, 272, 2189–2194.CrossRefGoogle Scholar
Ugolini, A., Somigli, S., Pasquali, V. and Renzi, P. (2007). Locomotor activity rhythm and sun compass orientation in the sand hopper Talitrus saltator are related. Journal of Comparative Physiology, 193, 1259–1263.CrossRefGoogle Scholar
Tassel, D. L., Roberts, N., Lewy, A. and O'Neil, S. D. (2001). Melatonin in plant organs. Journal of Pineal Research, 31, 8–15.CrossRefGoogle ScholarPubMed
Vargas, C. A., Narvaez, D. A., Pinones, A., Venegas, R. M. and Navarrete, S. A. (2004). Internal tidal bores, warm fronts and settlement of invertebrates in central Chile. Estuarine Coastal and Shelf Science, 61, 603–612.CrossRefGoogle Scholar
Vielhaben, V. (1963). Zur Deutung des semilunaren Fortpflanzungszyklus von Dictyota dichotoma. Zeitschrift fur Botanik, 51, 156–173.Google Scholar
Vince-Prue, D. (1982). Phytochrome and photoperiodic physiology in plants. In Biological Timekeeping, ed. Brady, J.. Society for Experimental Biology Seminar Series, 14, 101–117.
Vinogradov, M. E. (1968). Vertical distribution of the oceanic plankton. Moscow. (Translated by U.S. Department of Commerce, 1970), 339 pp.
Vitaterna, M. H., King, D. P., Chang, A. et al. (1994). Mutagenesis and mapping of a mouse gene, clock, essential for circadian behaviour. Science, 264, 719–725.CrossRefGoogle Scholar
Vivien-Roels, B. and Pevet, P. (1993). Melatonin: presence and formation in invertebrates. Experientia, 49, 642–647.CrossRefGoogle Scholar
Vivien-Roels, B., Pevet, P., Beck, O. and Fevre-Montagne, M. (1984). Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas chromatography-mass spectrometry. Neuroscience Letters, 49, 153–157.CrossRefGoogle Scholar
Ward, S. (1992). Evidence for broadcast spawning as well as brooding in the scleratinian coral Pocillopora damicornis. Marine Biology, 112, 641–646.CrossRefGoogle Scholar
Warman, C. G. and Naylor, E. (1995). Evidence for multiple, cue-specific circatidal clocks in the shore crab Carcinus maenas. Journal of Experimental Marine Biology and Ecology, 189, 93–101.CrossRefGoogle Scholar
Warman, C. G., O'Hare, T. J. and Naylor, E. (1991a). Vertical swimming in wave-induced currents as a control mechanism of intertidal migration by a sand-beach isopod. Marine Biology, 111, 49–54.CrossRefGoogle Scholar
Warman, C. G., Abello, P. and Naylor, E. (1991b). Behavioural responses of Carcinus mediterraneus Czerniavsky 1884 to changes in salinity. Scientia Marina, 54(4), 637–643.Google Scholar
Warman, C. G., Reid, D. G. and Naylor, E. (1993a). Variation in the tidal migratory behaviour and rhythms of light-responsiveness in the shore crab Carcinus maenas. Journal of the Marine Biological Association UK, 73, 355–364.CrossRefGoogle Scholar
Warman, C. G., Reid, D. G. and Naylor, E. (1993b). Circatidal variability in the behavioural responses of a sand-beach isopod Eurydice pulchra (Leach) to orientational cues. Journal of Experimental Marine Biology and Ecology, 168, 59–70.CrossRefGoogle Scholar
Watson, G. J., Williams, M. E. and Bentley, M. G. (2000). Can synchronous spawning be predicted from environmental parameters? A case study of the lugworm Arenicola marina. Marine Biology, 136, 1003–1017.CrossRefGoogle Scholar
Weinberg, S. (1999). A Fish Caught in Time. London: Fourth Estate, 241 pp.Google Scholar
Welch, J. M. and Forward, R. B. (2001). Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavioural responses to salinity and turbulence. Marine Biology, 139, 911–918.Google Scholar
Welch, J. M., Forward, R. B. and Howd, P. A. (1999). Behavioural responses of blue crab Callinectes sapidus postlarvae to turbulence: implications for selective tidal stream transport. Marine Ecology Progress Series, 179, 135–143.CrossRefGoogle Scholar
Welsh, D. K., Logothetis, D. E., Meister, M. and Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently-phased circadian firing rhythms. Neuron, 14, 697–706.CrossRefGoogle ScholarPubMed
Wheeler, D. E. (1978). Semilunar hatching periodicity in the mud fiddler crab Uca pugnax. Estuaries, 1, 268–269.CrossRefGoogle Scholar
White, R. G., Hill, A. E. and Jones, D. A. (1988). Distribution of Nephrops norvegicus (L.) larvae in the western Irish Sea: an example of advective control on recruitment. Journal of Plankton Research, 10(4), 735–747.CrossRefGoogle Scholar
Wilcockson, D. C. and Zhang, L. (2008). Circatidal clocks. Current Biology, 18(17), R753.CrossRefGoogle ScholarPubMed
Wilcockson, D. C., Chung, J. S. and Webster, S. G. (2002). Is crustacean hyperglycaemic hormone precursor-related peptide a circulating neurohormone?Cell and Tissue Research, 307, 129–138.CrossRefGoogle ScholarPubMed
Williams, B. G. (1998). The lack of circadian timing in two intertidal invertebrates and its significance in the circatidal/circalunidian debate. Chronobiology International, 15, 205–208.CrossRefGoogle ScholarPubMed
Williams, B. G. and Naylor, E. (1967). Spontaneously induced rhythm of tidal periodicity in laboratory-reared Carcinus. Journal of Experimental Biology, 47, 229–234.Google ScholarPubMed
Williams, B. G. and Naylor, E. (1969). Synchronization of the locomotor rhythm of Carcinus. Journal of Experimental Biology, 51, 715–725.Google Scholar
Williams, B. G., Naylor, E. and Chatterton, T. D. (1985). The activity patterns of New Zealand mud crabs under field and laboratory conditions. Journal of Experimental Marine Biology and Ecology, 89, 269–282.CrossRefGoogle Scholar
Williams, J. A. (1979). A semilunar rhythm of locomotor activity and moult synchrony in the sand-beach amphipod Talitrus saltator. European Marine Biology Symposia, 13, 407–414.Google Scholar
Williams, J. A. (1980). The light-response rhythm and seasonal entrainment of the endogenous circadian locomotor rhythm of Talitrus saltator (Crustacea: Amphipoda). Journal of the Marine Biological Association UK, 60, 773–785.CrossRefGoogle Scholar
Williams, J. A., Pullin, R. S. V., Williams, B. G., Arechiga, H. and Naylor, E. (1979a). Evaluation of the effects of injected eyestalk extract on rhythmic locomotor activity in Carcinus. Comparative Biochemistry and Physiology, 62, 903–907.CrossRefGoogle Scholar
Williams, J. A., Pullin, R. S. V., Naylor, E., Smith, G. and Williams, B. G. (1979b). The role of Hanstrom's Organ in clock control in Carcinus maenas. European Marine Biology Symposia, 13, 459–466.Google Scholar
Williams, Julie A. and Sehgal, A. (2001). Molecular components of the circadian system in Drosophila. Annual Review of Physiology, 63, 729–755.CrossRefGoogle ScholarPubMed
Williams, J. L. (1898). Reproduction in Dictyota dichotoma. Annals of Botany, 12, 559–560.CrossRefGoogle Scholar
Williams, J. L. (1905). Studies on the Dictyotaceae III. The periodicity of the sexual cells of Dictyota dichotoma. Annals of Botany, 19, 531–560.CrossRefGoogle Scholar
Williamson, D. I. (1951). Studies on the biology of Talitridae (Crustacea; Amphipod): visual orientation in Talitrus saltator. Journal of the Marine Biological Association UK, 30, 91–99.CrossRefGoogle Scholar
Winfree, A. T. (1987). The Timing of Biological Clocks. Scientific American Books, 200 pp.Google Scholar
Withyachumnarnkul, B., Pongsa-Asawapaiboon, A., Ajpru, S. et al. (1992). Continuous light increases N-acetyltransferase activity in the optic lobe of the giant freshwater prawn Macrobrachium rosenbergii de Man (Crustacea, Decapoda). Life Sciences, 51, 1479–1484.CrossRefGoogle Scholar
Wood, L. and Hargis, J. H. (1971). Transport of bivalve larvae in a tidal estuary. European Marine Biology Symposia, 4, 29–44.Google Scholar
Wooldridge, T. and Erasmus, T. (1980). Utilization of tidal currents by estuarine plankton. Estuarine, Coastal and Shelf Science, 11, 107–114.CrossRefGoogle Scholar
Zanchin, G. (2001). Macro- and microcosmus: moon influence on the human body. Earth, Moon and Planets, 85–86, 453–461.Google Scholar
Zeng, C. and Naylor, E. (1996a). Synchronization of endogenous tidal vertical migration rhythms in laboratory-hatched larvae of the crab Carcinus maenas. Journal of Experimental Marine Biology and Ecology, 198, 269–289.CrossRefGoogle Scholar
Zeng, C. and Naylor, E. (1996b). Endogenous tidal rhythms of vertical migration in field-collected zoea-1 larvae of the shore crab Carcinus maenas: implications for ebb tide offshore dispersal. Marine Ecology Progress Series, 132, 71–82.CrossRefGoogle Scholar
Zeng, C. and Naylor, E. (1996c). Heritability of circatidal vertical migration rhythms in zoea larvae of the crab Carcinus maenas (L.). Journal of Experimental Marine Biology and Ecology, 202, 239–257.CrossRefGoogle Scholar
Zeng, C. and Naylor, E. (1997). Rhythms of larval release in the shore crab Carcinus maenas (Decapoda: Brachyura). Journal of the Marine Biological Association UK, 77, 299–305.CrossRefGoogle Scholar
Zeng, C., Abello, P. and Naylor, E. (1999). Endogenous tidal and semilunar moulting rhythms in early juvenile shore crabs Carcinus maenas: implications for adaptation to a high intertidal habitat. Marine Ecology Progress Series, 191, 257–266.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.012
Available formats
×