Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T04:17:43.871Z Has data issue: false hasContentIssue false

2 - NP and NP completeness

from PART ONE - BASIC COMPLEXITY CLASSES

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

[if φ(n) ≈ Kn2] then this would have consequences of the greatest magnitude. That is to say, it would clearly indicate that, despite the unsolvability of the [Hilbert] Entscheidungsproblem, the mental effort of the mathematician in the case of the yes-or-no questions would be completely replaced by machines. … [this] seems to me, however, within the realm of possibility.

– Kurt Gödel in a letter to John von Neumann, 1956

I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know.

– Jack Edmonds, 1966

In this paper we give theorems that suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually.

– Richard Karp, 1972

If you have ever attempted a crossword puzzle, you know that it is much harder to solve it from scratch than to verify a solution provided by someone else. Likewise, solving a math homework problem by yourself is usually much harder than reading and understanding a solution provided by your instructor. The usual explanation for this difference of effort is that finding a solution to a crossword puzzle, or a math problem, requires creative effort. Verifying a solution is much easier since somebody else has already done the creative part.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 38 - 67
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • NP and NP completeness
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • NP and NP completeness
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • NP and NP completeness
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.005
Available formats
×